

Objective

Students will...

- Be able to define what an input and an output is.
- Be able to define what a function is.

Functional Relationship

A <u>functional relationship</u> is a relationship in which one quantity <u>depends</u> on another. In other words, given two variables, one is always <u>dependent</u> on the other.

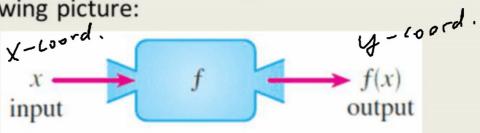
ex. Height is a function of age

Temperature is a function of date

Cost of mail is a function of weight.

Independent vs Dependent Variables

That being said, we must always be able to define both the independent and dependent variables.

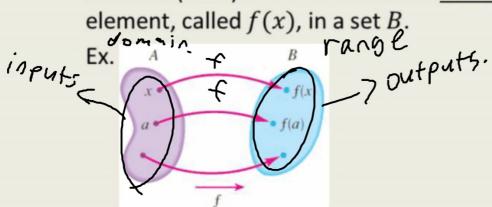

ex. Height is a function of age.

Temperature is a function of date.

Cost of mail is a function of weight.

Input vs Output

Mathematically speaking, we can also differentiate the independent and the dependent variables as inputs and outputs. Consider the following picture:

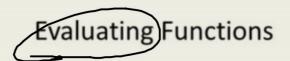


Here the function "f" is the rule that the machine operates in, and what comes out depends on what goes in.

Definition of a Function

So now we are ready to define what a function is.

A <u>function</u>, say f, is a rule that assigns to each element (item) x in a certain set A <u>exactly one</u> element, called f(x), in a set B.


The set A is also known as the **domain**, and set B is known as the **range**.

Examples of Functions

Another way to define function is for every input, there is exactly one output.

Ex.

$$f(x) = x - 3$$

 $f(1) = 1 - 3 = -3$
 $f(x) = x^2$
 $f(1) = x^2$
 $f(1) = x^2$

Consider the function f(x) = x - 3

Here, x is the input, while f(x) is the output. That being said, f(x) would change as x changes. We can evaluate functions by placing different inputs. For the above function

different inputs. For the above function,
$$f(1) = (1) - 3 = -2$$

$$f(2) = (2) - 3 = -1$$

$$f(0) = (0) - 3 = -3$$

$$f(-3) = (-3) - 3 = -6$$

Let $f(x) = 3x^2 + x - 5$. Evaluate each function value.

1. f(-2)

3. f(4)

2. f(0)

$$\frac{3(4)}{3(4)} - \frac{15}{4} = -\frac{15}{4}$$

Piecewise Functions

<u>Piecewise functions</u> are combination of functions that are defined by the <u>range of inputs</u>.

Ex.
$$C(x) = \begin{cases} 39 & \text{if } 0 \le x \le 400 \\ 39 + 0.2(x - 400) & \text{if } x > 400 \end{cases}$$
So whenever x is in between or equal to 0 and

So whenever x is in between or equal to 0 and 400, then the output is always 39. Whenever x is strictly above 400, the bottom function applies.

Evaluate.

22.
$$f(x) = \begin{cases} 5 & \text{if } x \le 2\\ 2x - 3 & \text{if } x > 2 \end{cases}$$

 $f(-3), f(0), f(2), f(3), f(5)$

$$f(3) = 5$$
 $f(3) = 3$
 $f(3) = 5$ $f(5) = 3$

Use the function to evaluate the indicated expression.

$$f(x) = 3x - 1; f(2x), 2f(x)$$

$$f(2x) = 3(2x) - 1$$

$$-6x - 1$$

$$-6x - 1$$

$$-6x - 1$$

$$-6x - 1$$

Find f(a), f(a+h), and the difference quotient $\frac{f(a+h)-f(a)}{h}$

$$f(x) = x^2 + 1$$

Homework 9/3

TB pg. 155 #1-4, 12, 16, 24, 28, 34