


Objective

Students will...

- Be able to define what a tangent line is.

- Be able to make connections between tangent
lines to the rate of change (slope).

- Be able to define derivative and find it.

- Be able to understand the relationship
between differentiability and continuity.



The Tangent Line Problem

Calculus is said to have grown out of 4 major problems. First of these
problems involve the tangent line. Recall that a tangent line is a line that
represents the slope at a certain point. See examples:
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Tangent line (o a curve at a point
Figure 2.2

Tangent line to a circle
Figure 2.1



Secant to Tangent

For any circle, the tangent line is always perpendicular to the radius.
However, for a curve this isn’t an easy thing to find. In order to find the
tangent line, we need to use the secant line, which is a line created by
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Derivative

To find the slope of any point on a function is known as finding its
derivative at that point. It is also known as differentiating a function at a
certain point. So now, we can define what a derivative is at x:
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f'(x) is read as “f prime of x.”

Notice the different notation for derivatives.
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Again, derivative is simply finding slope, or average rate of change.
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Examples
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Examples

Find the derivative of f (x) = Then find the tangent to the graph at
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Examples
Find the derivative of f (x) = \/_Th , fi dth tangent to th raph at
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Differentiability and Continuity

Recall that limit only exists if the right side and the left side limits match.
It turns out, this is also true for differentiability (derivatives).

A function, say f, is differentiable if and only if,
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That being said, a function is not differentiable at these instances:
1. Cusp (sharp turn or corners) Jé\

Holes

Vertical Asymptotes

Vertical line
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Jump Discontinuities.
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Examples




Differentiability and Continuity

Somethings to keep in mind regarding derivatives and continuity...

1. When a function is not continuous at x = ¢, it is also not
differentiable at x = c.

2. |If the function is differentiable at x = ¢, it is also continuous there.
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However, the converse is NOT necessarily true!!

1. If function
th

= ¢, it is also not continuous

2. |If the function is continuous at x = ¢, | ifferentiable there.



Homework 9/26

2.1 Exercises #11-31 (odd), 39-42,



