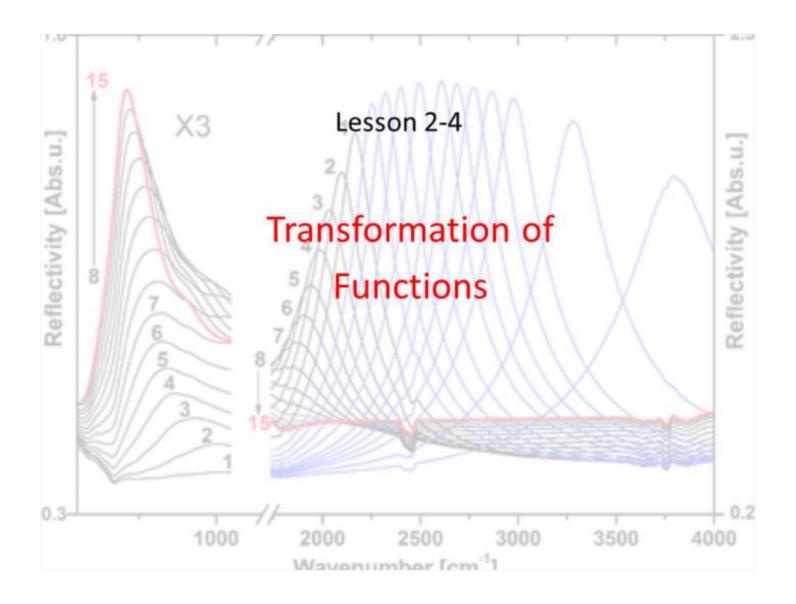
Warm Up 9/12

Determine whether f is even, odd, or neither.

a.
$$f(x) = 2x^5 - 3x^2 + 2$$

$$b. f(x) = \frac{1}{x+2}$$



Objective

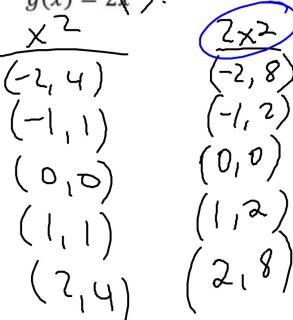
Students will...

- Be able to apply the properties of <u>stretch and</u> <u>compression</u> in graphing various functions.
- Be able to determine the scale factor of the stretch or compression.

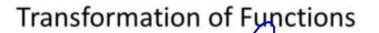
Transformation of Functions

Let's go ahead and compare the two functions: f(x) = x $g(x) = 2x^2$

$$g(x)=2x^2$$







Let's go ahead and compare the two functions: $f(x) = x^2$ and

$$g(x) = \frac{1}{2}(x^{2})$$

$$x^{2} \qquad \frac{1}{2}x^{2}$$

$$(-2, 2)$$

$$(-1, 1)$$

$$(0, 0)$$

$$(1, 1)$$

$$(0, 0)$$

$$(1, 1)$$

$$(1, 1)$$

$$(1, 1)$$

$$(1, 1)$$

$$(2, 4)$$

$$(3, 2)$$



Transformation: Stretch and Compression

As observed, the transformation that took place was a vertical **stretch or a compression** by a certain **scale factor**. This can be generalized by the following:

For
$$y = cf(x)$$

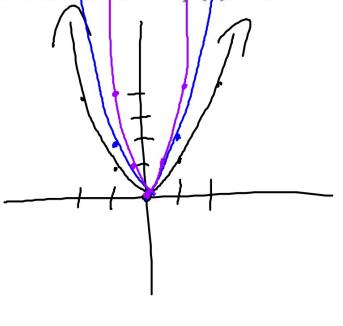
If c > 1, stretch the graph of y = f(x) vertically by a factor of c.

If 0 < c < 1, compress the graph of y = f(x) vertically by a factor of c.

Transformation of Functions $\frac{\{(x) = (2x-2)^2 + 3}{\sqrt{1}}$

Now let's go ahead and compare the two functions: f(x) and $g(x) = (2x)^2 = 4x^2$

$$\frac{x^{2}}{(-2,4)}$$
 $\frac{(2x)^{3}}{(-1,4)}$ $\frac{(-1,4)}{(-1,1)}$ $\frac{(-1,4)}{(-1,1)}$ $\frac{(-1,4)}{(-1,1)}$ $\frac{(-1,4)}{(-1,1)}$ $\frac{(-1,4)}{(-1,1)}$ $\frac{(-1,4)}{(-1,4)}$



Transformation of Functions

Now let's go ahead and compare the two functions: $f(x)=x^2$ and $g(x)=\left(\frac{1}{2}x\right)^2$

Transformation: Stretch and Compression

As observed, the transformation that took place was a horizontal **stretch or a compression** by a certain **scale factor**. This can be generalized by the following:

For
$$y=f(cx)$$
 If $c>1$, compress the graph of $y=f(x)$ horizontally by a factor of $\frac{1}{c}$

If 0 < c < 1, stretch the graph of y = f(x) horizontally by a factor of $\frac{1}{c}$

Note the **opposite relationship** of the scale factor between vertical and horizontal stretch/compression.

Examples

Determine whether the function has a vertical or a horizontal stretch/compression, and determine its scale factor.

a.
$$f(x) = 3x^2$$

Vertical Shetch
by ?

b.
$$f(x) = \left(\frac{1}{2}x\right)^3$$

horiz. Stretch by 2.

c.
$$h(x) = \frac{3}{4}(x-1)^{19}$$

e.
$$f(x) = \frac{5}{4}|x|$$

Vertical statch
by $\frac{5}{4}$

g.
$$u(x) = \frac{10}{11}(x - 990)^5$$
 h. t

f.
$$q(x) = \frac{8}{5} \sqrt[6]{x-1}$$

V. Shetch by 8/5

h.
$$t(x) = 3\sqrt{\frac{7}{6}}(x+5)$$

V. 5 hetch by 3

H. 6 mp. by $6/4$.

Examples

For the function given function f, write the equation for the final transformed graph, based on the description of the transformation done.

 $f(x) = \sqrt[3]{x}$; shift 3 units to the left, stretch vertically by a factor of 5, and reflect in the x-axis.

Examples

Explain how the graph of g is obtained from the graph of f.

$$f(x) = |x|, g(x) = 3|x| + 1$$

V. Stretch by 3, Up (.

$$f(x) = |x|, g(x) = -|x+1|$$

left | reflect vertically

Transformation WKSHT