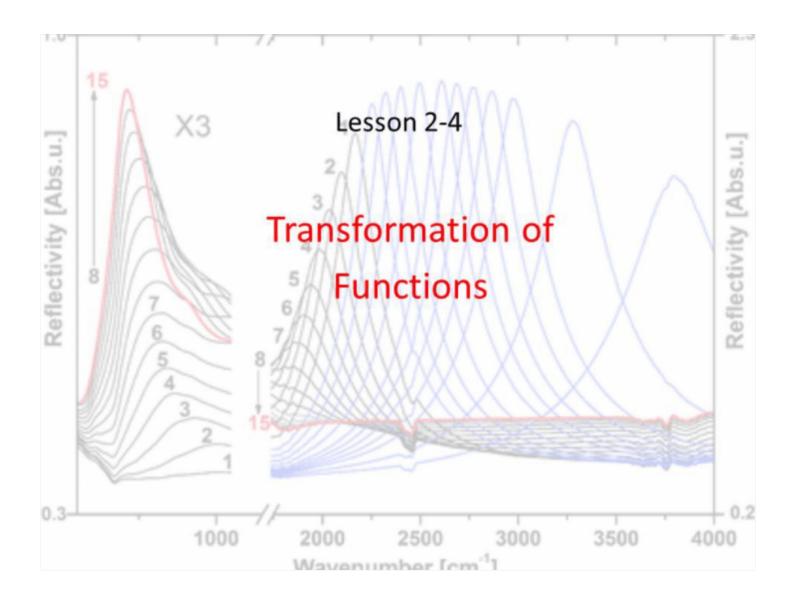
Warm Up 9/11

Describe the shift of the function: $g(x) = (x + 11)^2 - 2$ from its "parent" function, $f(x) = x^2$

Describe the shift of the function $h(x) = (x - 6)^5 + 1$ from its "parent" function, $f(x) = x^5$



Objective

Students will...

- Be able to apply the properties of <u>reflections</u> in graphing various functions.
- Be able to determine whether a function is even or odd.

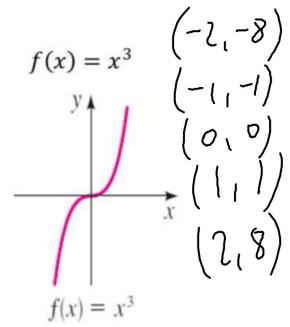
"Parent" Functions

We have seen and studied some of the standard functions and their graphs. For example.

$$f(x) = x^{2} \quad \begin{pmatrix} -2_{l} & 4 \\ -|_{l} & l \end{pmatrix}$$

$$\begin{pmatrix} 0_{l} & 0 \\ 1_{l} & l \end{pmatrix}$$

$$f(x) = x^{2}$$



$$3^{2} = 9 - 29$$

$$-3^{2} = 9 - (3^{2})$$

$$(-3)^{2} = 9$$

Transformation of Functions $3^2 = 9$ $3^2 = 9$ $(-2)^2 = 9$ $(-2)^2 = 9$ Let's go ahead and compare the two functions: $f(x) = x^2$ and $g(x) = -k^2$

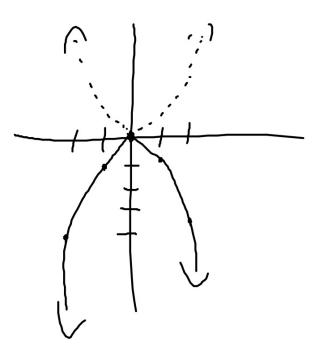
$$g(x) = -\langle x^2 \rangle$$

$$\frac{-x^{2}}{(-2,-4)}$$

$$(0,0)$$

$$(1,-1)$$

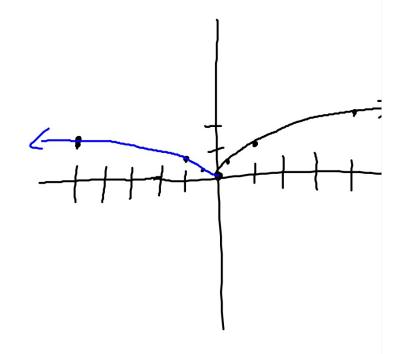
$$(2,-4)$$



Transformation of Functions

Now let's compare the functions: $f(x) = \sqrt{x}$ and $g(x) = \sqrt{-x}$

$$\frac{5x}{(0,0)} \frac{5-x}{(0,0)} \frac{(0,0)}{(-1,1)} \frac{(-1,1)}{(-1,1)} \frac{$$



Transformation: Reflection

As observed, the differences between the two functions were either **horizontal or vertical** reflection. This can be generalized by the following:

Along the y-axis (horizontal)

y = f(-x) reflects the graph of y = f(x) along the y-axis (horizontal reflection).

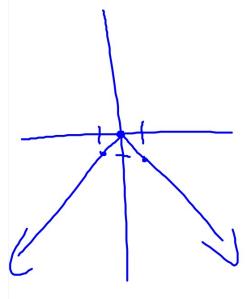
Along the x-axis (vertical)

y = -f(x) reflects the graph of y = f(x) along the x-axis (vertical reflection).

Examples

Sketch the following functions by transforming its "parent" function.

$$a. f(x) = -|x|$$



b.
$$f(x) = (-x)^3$$

 $(-2, -8)$ $\longrightarrow (2, -8)$
 $(-1, -1)$ $\longrightarrow (1, -1)$
 $(0, 0)$ $\longrightarrow (0, 0)$
 $(1, 1)$ $\longrightarrow (-1, 1)$
 $(2, 8)$ $\longrightarrow (-1, 8)$

Even Functions

Consider the function $f(x) = x^2$. We observed that it can be reflected vertically, i.e. along the x-axis. What happens when we try to reflect this function horizontally, i.e. along the y-axis?

This would mean that the equation would be written in the form of $f(x) = (-x)^2 = x^2$

 $f(x) = x^2$

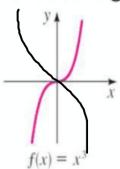
So, as you can see horizontal reflection really did not change anything. This can easily be seen on its graph. y_{*}

Any function that has this characteristic is called an **even** function.

Odd Functions

 $(-x)^3 = -(x^3)$

Now consider the function $f(x) = x^3$. We have already seen it reflected horizontally, i.e. along the y-axis. What happens when we reflect this graph vertically, i.e. along the x-axis? Look at the graph!



Here the graph looks the same whether it is reflected vertically or horizontally. This can easily be seen algebraically: $(-x)^3 = -(x^3)$.

Any function that has this characteristic is called an odd function.

Even and Odd Functions

So now we give a formal, generalized definition of even and odd functions:

Let f be a function,

$$f$$
 is even if $f(-x) = f(x)$, for all x in the domain of f f is odd if $f(-x) = -f(x)$, for all x in the domain of f

Ex. Determine whether the following functions are even or odd.

a.
$$f(x) = x^5 + x$$
 b. $g(x) = 1 - x^4$ c. $h(x) = 2x - x^2$ b. $g(-x) = |-(-x)|$ c. $h(-x) = 2(-x) - (-x)$ c. $h(-x) = 2(-x)$ c. $h(-x)$

Homework 9/11

TB pg. 190 #16, 35, 36, 40, 61-68