Warm Up 9/10

- 1. Define function
 For every input there is exactly one output.
- 2. Evaluate f(0) and f(2) for the following.

a.
$$f(x) = x^2$$

 $f(0) = 0$
 $f(1) = 4$
b. $g(x) = x^2 = 2$
 $f(0) = -2$
 $g(1) = 2$

Objective

Students will...

- Be able to understand the basic idea of transformation of functions.
- Explore and apply the properties of vertical and horizontal <u>shifts</u>.

"Parent" Functions

We have seen and studied some of the standard functions and their graphs. For example.

Transformation of Functions g(x) = f(x) - 2Now, consider our problem from the warm up. Let's go ahead and compare the two functions: $f(x) = x^2$ and $g(x) = x^2 = 2$

Transformation: Vertical Shift

As observed, the difference between f(x) and g(x) was that g(x) was simply f(x) vertically **shifted (b) 2 units**. This can be generalized by the following:

 $y = f(x) \pm c$ shifts the graph of y = f(x) upward(+) or downward(-) c units, for c > 0.

Ex. Use the graph of $f(x) = x^2$ to sketch the graph of,

Example

Use the graph of $f(x) = x^3 - 9x$ shown below to sketch the graph of $g(x) = x^3 - 9x + 10$ and $h(x) = x^3 - 9x - 20$

Transformation: Horizontal Shift

Similar to vertical shift, we also have a <u>horizontal shift</u>. Let's compare the three functions: $f(x) = x^2$, $g(x) = (x + 2)^2$, $h(x) = (x - 1)^2$

$$\frac{x^{2}}{(-2,4)} \times \frac{x^{2}}{(-3,4)} \times \frac{x^{2}}{(-4,4)} \times \frac{x^{2}}{(-$$

$$\frac{(x-1)^{2} + i + 1}{(7, 4)}$$

$$(0, 1)$$

$$(1, 0)$$

$$(2, 1)$$

$$(3, 4)$$

Transformation: Horizontal Shift

So the horizontal shift can also be generalized.

 $y = f(x \pm c)$ shifts the graph of y = f(x) to the right($\frac{1}{2}$) or left($\frac{1}{2}$) c units, for c > 0. Note the **opposite** signs!

Ex. Use the graph of $f(x) = x^2$ to sketch the graph of,

Example

Use the graph of $f(x) = \sqrt{x}$ shown below to sketch the graph of

 $g(x) = \sqrt{x - 3} \quad \text{and} \quad h(x) = \sqrt{x - 3} + 4$ $y = \sqrt{x}$ $(2, \sqrt{2}) \quad (4, 2)$ 1 - (1, 1) $0 \quad 1$ x

Examples

Describe the shift of the function $h(x) = (x-6)^5 + 1$ from its "parent" function, $f(x) = x^5$

Describe the shift of the function $p(x) = \sqrt{x+5} - 4$ from its "parent" function, $f(x) = \sqrt{x}$

Homework 9/10

TB pg. 190 #1-3, 7, 11, 13, 19 (a, b, d), 27, 28, 33, 37, 39