Warm Up 9/12

Determine whether f is even, odd, or neither.

a.
$$f(x) = 2x^5 - 3x^2 + 2$$

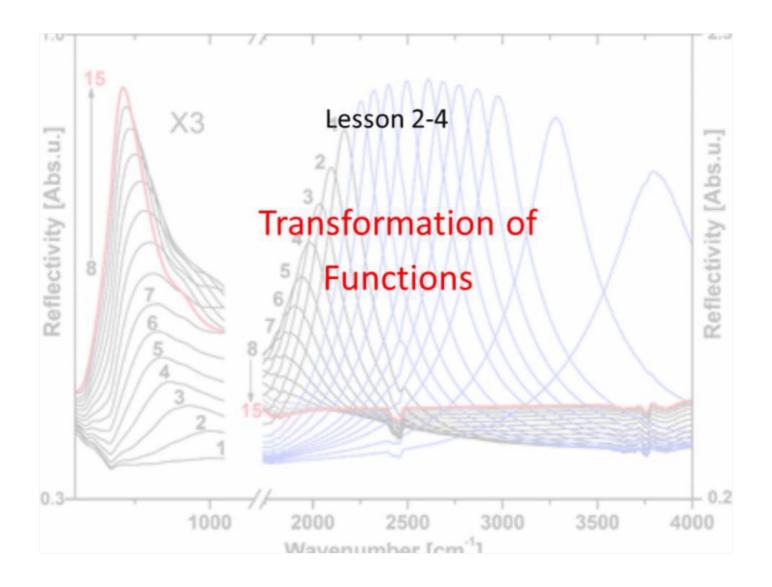
 $f(x) = 2(-x)^5 - 3(-x)^2 + 2$
 $= -2x^5 - 3x^2 + 2$
 0

Determine whether
$$f$$
 is even, odd, or neither.

a. $f(x) = 2x^5 - 3x^2 + 2$

$$f(x) = 2(-x)^5 - 3(-x)^{1+1}$$

$$= -12x^5 - 3x^2 + 2$$

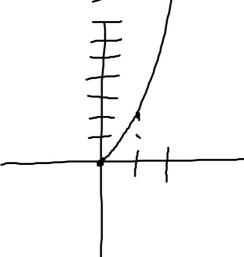


Objective

Students will...

- Be able to apply the properties of <u>stretch and</u> <u>compression</u> in graphing various functions.
- Be able to determine the scale factor of the stretch or compression.

Let's go ahead and compare the two functions: $f(x) = x^2$ and $g(x) = 2x^2$



Let's go ahead and compare the two functions: $f(x) = x^2$ and $g(x) = \frac{1}{2}x^2$

Transformation: Stretch and Compression

As observed, the transformation that took place was a vertical stretch or a compression by a certain scale factor. This can be generalized by the following:

For
$$y=cf(x)$$

If $c>1$, stretch the graph of $y=f(x)$ vertically by a factor of c.

If 0 < c < 1, compress the graph of y = f(x) vertically by a factor of c.

Now let's go ahead and compare the two functions: $f(x) = x^2$ and $g(x) = (2x)^2$

Now let's go ahead and compare the two functions: $f(x)=x^2$ and $g(x)=\left(\frac{1}{2}x\right)^2$

Transformation: Stretch and Compression

As observed, the transformation that took place was a horizontal **stretch or a compression** by a certain **scale factor**. This can be generalized by the following:

For
$$y = f(cx)$$

If c>1, compress the graph of y=f(x) horizontally by a factor of $\frac{1}{c}$

If 0 < c < 1, stretch the graph of y = f(x) horizontally by a factor of $\frac{1}{c}$

Note the **opposite relationship** of the scale factor between vertical and horizontal stretch/compression.

Examples

Determine whether the function has a vertical or a horizontal stretch/compression, and determine its scale factor.

a.
$$f(x) = 3(x^2)$$

Vertical Stretch.
by a factor of S .

c.
$$h(x) = \frac{3}{4}(x-1)^{19}$$

Vertical compression
by factor of $\frac{3}{4}$

b.
$$f(x) = \left(\frac{1}{2}x\right)^3$$

horizontal shetch-
by a factor of 2.

d.
$$p(x) = \sqrt{3x}$$

havizantal

(ompression by factor (3)

e.
$$f(x) = \frac{5}{4}|x|$$

Vertical Stretch
by factor of 34

g.
$$u(x) = \frac{10}{11}(x - 990)^5$$

Writed Compression
by factor of 10

f.
$$q(x) = \frac{8}{5} \sqrt[6]{x-1}$$
 factor of.
Vertical Stretch by $\frac{8}{5}$

h.
$$t(x) \neq 3\sqrt{\frac{7}{6}}(x+5)$$

Vertical stretch by

Factor of 3

Horizontal Compression by

Factor of $\frac{1}{2}$

Examples

For the function given function f, write the equation for the final transformed graph, based on the description of the transformation done.

 $f(x) = \sqrt[3]{x}$; shift 3 units to the left, stretch vertically by a factor of 5, and reflect in the x-axis.

and reflect in the x-axis. $+ (x) = -5^{3} \times + 3$ $+ (x) = 5^{3} - (x+3)$

Examples

 $-5(x-1)^2+3$

Explain how the graph of g is obtained from the graph of f.

$$f(x) = |x|, g(x) = 3|x|+1$$

Vert- Stetch by factor of 3, up 1.

$$f(x) = |x|, g(x) = -|x+1|$$

$$[crt. reflection;$$

$$(a long X-axis)$$

left 1.

