Warm Up 9/10

- 1. Define function
 For every input there's exactly one output.
 - 2. Evaluate f(0) and f(2) for the following.

a.
$$f(x) = x^2$$

 $f(0) = 0$
 $f(2) = 4$

b.
$$g(x) = x^2 - 2$$

$$f(0) = -2$$

$$f(1) = 2$$

Objective

Students will...

- Be able to understand the basic idea of transformation of functions.
- Explore and apply the properties of vertical and horizontal <u>shifts</u>.

"Parent" Functions

We have seen and studied some of the standard functions and their graphs. For example.

$$f(x)=x^2$$

$$f(x)=x^3$$

Transformation of Functions $g(x)=\int x + 2$

Now, consider our problem from the warm up. Let's go ahead and compare the two functions: $f(x) = x^2$ and $g(x) = x^2 + 2$

$$g(x) = F(x) + 2$$

Transformation: Vertical Shift

As observed, the difference between f(x) and g(x) was that g(x)was simply f(x) vertically <u>shifted up 2 units</u>. This can be y = x + 3 generalized by the following:

 $y = f(x) \pm c$ shifts the graph of y = f(x) upward(+) or downward(-) c units, for c > 0.

Ex. Use the graph of $f(x) = x^2$ to sketch the graph of, $g(x) = x^2 + 3$ and $h(x) = x^2$

$$g(x) = (x^2 + 3) \qquad \text{and} \qquad$$

Example

Use the graph of $f(x) = x^3 - 9x$ shown below to sketch the graph of $g(x) = (x^3 - 9x) + 10$ and $h(x) = (x^3 - 9x) - 20$

Transformation: Horizontal Shift

Similar to vertical shift, we also have a <u>horizontal shift</u>. Let's compare the three functions: $f(x) = x^2$, $g(x) = (x + 2)^2$, $h(x) = (x - 1)^2$

Transformation: Horizontal Shift $J(x) = \sqrt{x}$

So the horizontal shift can also be generalized.

 $y = f(x \pm c)$ shifts the graph of y = f(x) to the right(+) or c (-) c units, for c > 0. Note the **opposite** signs!

Ex. Use the graph of $f(x) = x^2$ to sketch the graph of,

$$g(x) = (x+4)^2 \qquad \text{and} \qquad$$

$$h(x) = (x-2)^2$$

Example

Use the graph of $f(x) = \sqrt{x}$ shown below to sketch the graph of $g(x) = \sqrt{x-3}$ and $h(x) = \sqrt{x-3} + 4$

Examples

Describe the shift of the function: $g(x) = (x + 11)^2 - 2$ from its "parent" function, $f(x) = x^2$ eft / 1 down

Describe the shift of the function $h(x) = (x - 6)^5 + 1$ from its "parent" function, $f(x) = x^5$

Describe the shift of the function $p(x) = \sqrt{x+5} - 4$ from its "parent" function, $f(x) = \sqrt{x}$

Homework 9/10

TB pg. 190 #1-3, 7, 11, 13, 19 (a, b, d), 27, 28, 33, 37, 39