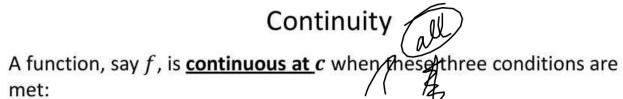


Objective

Students will...

- Be able to distinguish between removable and nonremovable discontinuities.
- Be able to define and use the intermediate value theorem.



"outputs"

- 1. f(c) is defined. (i.e. can be evaluated).

2.
$$\lim_{x \to c} f(x)$$
 exists. ((an be found)
 $(x) = \int_{x \to c} f(x) = f(c)$. (Direct Substitution) $(x) = \int_{x \to c} f(x) dx$

Recall: We can show that a function has a limit at any given point by the existence of limit theorem:

 $\lim_{x\to c^-} f(x) = L = \lim_{x\to c^+} f(x)$, (the right and the left side limits are equal)

Types of Discontinuity

Always remember that not all discontinuities are created equal! In fact, just because a discontinuity exists at a certain point, this doesn't automatically indicate that the limit doesn't exist. Consider the following

problems:

a.
$$\lim_{x\to 1} \left(\frac{x^2-1}{x-1} \right) = (x+1)$$

= (+1=6)

Removable Discont.

Cinit exist

b.
$$\lim_{x \to 1} \left(\frac{1}{x-1}, \frac{x+1}{x+1} - \frac{x+1}{x^2-1} \right) = 0$$

Wonremovable 0,460nt.

Linit DNG.

Types of Discontinuity

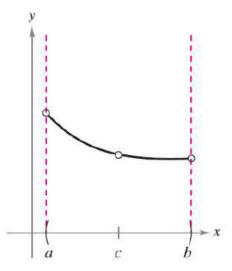
Clearly, (a) has a limit, while (b) did not. Algebraically speaking, simple factoring and simplifying allowed us to find the limit for (a), while there was nothing that could have been done for to find a limit for (b). This can be more easily seen looking at their graphs.

In general...

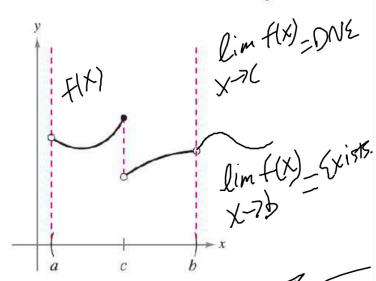
If the limit exists at a certain point of a function, say c, while the function is undefined at c, then the function is said to have a **removable** discontinuity at c

If the limit does not exist at c, nor is defined at c, then the function is said to have a **nonremovable discontinuity** at c.

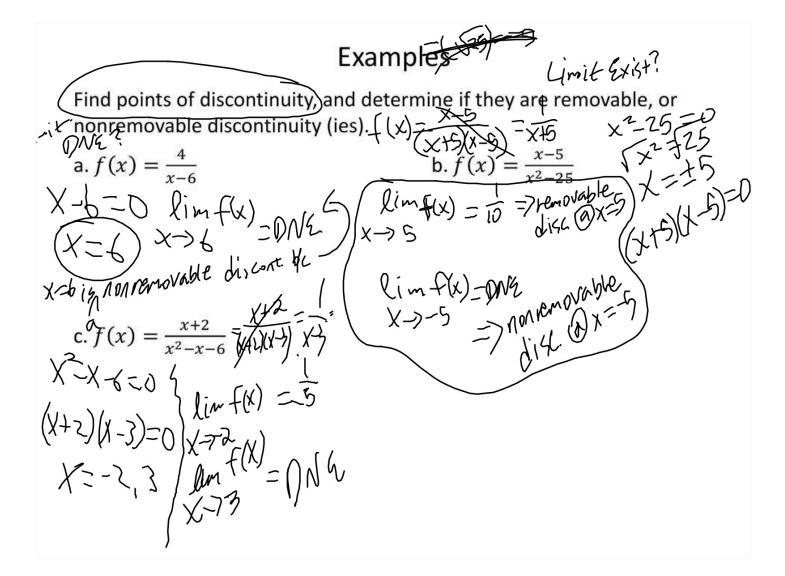
Removable vs Nonremovable Discontinuity



(a) Removable discontinuity



(b) Nonremovable discontinuity



Intermediate Value Theorem

There is a very simple but important theorem in Calculus regarding continuity.

Intermediate Value Theorem- If f is continuous on the closed interval [a,c], and $f(a) \neq f(c)$, and k is any number between f(a) and f(c), then there is at least one number b in [a,c] such that f(b)=k.

c bisbetnean a, c.

In other words, in the interval [a, b], if (a, b), then, f(b) exists, such

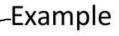
that f(x) = f(x).

f(a) f(b)

Example

Use the Intermediate Value Theorem to show that the polynomial function $f(x) = x^3 + 2x - 1$ has a zero (x-intercept or root) in the interval [0,1].

 $t(1) = \frac{1}{3} + 5(1) - 1 = 5$ $t(9) = \frac{9}{3} + 5(9) - 1 = -1$ By IVT there must be c in [0,1] such that f(c)=0.



Use the Intermediate Value Theorem to show that the function

 $f(x) = -\frac{5}{x} + \tan \frac{\pi x}{10}$ has a zero (x-intercept or root) in the interval [1,4].

$$f(1) = -\frac{3}{1} + \tan \frac{\pi}{10} - 215$$

Homework 9/11

1.4 exercises #35-47 (odd), 48, 51, 53, 83-84