Warm Up 4/18

Lesson 9-9: Systems of Inequalities

Objectives

Students will...

- Be able to sketch the graphs of any system of inequalities.
- Be able to define and determine whether the solution region is bounded or unbounded.

System of Inequalities

We have just refreshed our mind about graphing inequalities with \qquad of possible solutions.
We will now refresh our minds on systems of inequalities, which are sets of \qquad

$$
\text { Ex. }\left\{\begin{array}{c}
-\frac{1}{2} x^{2}+y \geq-2 \\
x-y<0 \\
x<-1 \\
y \geq 0
\end{array}\right\}
$$

We will see that when dealing with a system of inequalities, we simply need to sketch the graph of each inequality
\qquad , and analyze them altogether \qquad _.

Non-linear Inequalities

First off, we need to know how to graph non-linear inequalities (power >1). For example, consider...

$$
y \leq x^{2} \quad \text { and } \quad y>x^{2}
$$

As you can see, when inequalities are involved, \qquad line represents greater than or less than, while
\qquad line represents the "or equal to."

Equation of a Circle

Another equation that we must familiarize ourselves with is the equation of a \qquad . We will study this much more in depth in the next chapter, so for now our goal is to being able to identify them and graphing them.
For this unit, they will take the form: $x^{2}+y^{2}=r^{2}$, where r represents the \qquad of the circle.
Ex. $x^{2}+y^{2}=25$ is the equation of a circle centered at the origin, $(0,0)$, having the radius of $\sqrt{25}=5$. Let's graph this!

Example

So now let's graph a system of inequalities.
$\left\{\begin{array}{c}y \geq-x^{2} \\ x-y>4\end{array}\right\}$

As you can see, we simply need to shade the region that both graphs share as possible solutions.

Example

$$
\left\{\begin{array}{c}
x+2 y \geq 5 \\
x^{2}+y^{2}<25
\end{array}\right\}
$$

$$
\left\{\begin{array}{c}
x+y \geq 3 \\
-2 x+y \leq 5 \\
x-2 y \leq 12
\end{array}\right\}
$$

Bounded vs Unbounded

As you can see, the solution regions in the first and the last example seem to go on for infinity, i.e. there is no boundary, while the region in the second example appears to have a set of boundaries.
Regions that have no boundaries are said to be unbounded (first and third example), while regions that have boundaries are said to be bounded (second example).

Ex. Bounded

- $\left\{y>x^{2}-4, y \leq 4-x^{2}\right\}$

Unbounded

