Warm Up 4/24

Write the following matrix into row-echelon form:

$$\begin{bmatrix} -2 & -3 & -2 \\ 3 & -2 & -2 \\ 3 & -2 & -1 \\ -1 & -1 & -2 \end{bmatrix} \xrightarrow{\text{Ny}} \begin{bmatrix} -1 & -1 & -2 \\ 3 & -2 & -2 \\ 3 & -2 & -1 \\ -2 & -3 & -2 \end{bmatrix} \xrightarrow{\text{Ny}} \begin{bmatrix} -1 & -1 & -2 \\ 3 & -2 & -2 \\ 3 & -2 & -1 \\ -2 & -3 & -2 \end{bmatrix},$$

Lesson 9-4 $\Delta < 0$ Solving System of Linear **Equations Using Matrices**

Objective

Students will...

- Be able to write <u>augmented matrix</u> of a linear system.
- Be able to solve system of linear equations using matrices.

Elementary Row Operations

There are certain ways a matrix can be "safely" modified. These are known as <u>elementary row operations</u>. They are given as follows.

Elementary Row Operations

1. Add a multiple of one row to another

Symbol: $R_i + kR_j \rightarrow R_i$

2. Multiply a row by a nonzero constant

Symbol: kR_i

3. Interchange two rows.

Symbol: $R_i \leftrightarrow R_j$

These three operations can <u>always be done</u> in <u>any matrix</u>. The usefulness of these operations will be explored in the next section. For now, our goal is to get used to doing these operations on matrices.

Row-Echelon Form

The main reason for these operations is so that we can rewrite the matrix in what's known as, **Row-Echelon Form**. A matrix is in Row-Echelon Form if it satisfies the following conditions:

- The first nonzero number in each row (reading from left to right) is 1.
 This is called the <u>leading entry</u>.
- 2. The leading entry in each row is to the right of the leading entry in the row immediately above it.
- 3. All rows consisting entirely of zeroes are at the bottom of the matrix.

Ex.
$$\begin{bmatrix} 1 & 3 & -6 & 10 & 0 \\ 0 & 0 & 1 & 4 & -3 \\ 0 & 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Augmented Matrices of a Linear System

The main reason why we study matrices in this course, is to solve <u>linear</u> <u>systems</u> using matrices. The first step to this process is to write a linear system (<u>system of linear equations</u>) into an <u>augmented matrix</u>, which is made up of the <u>coefficient</u> and the <u>constants</u> of the linear system.

Ex. Linear system Augmented matrix
$$\begin{cases}
3x - 2y + z = 5 \\
x + 3y - z = 0 \\
-x + 0y + 4z = 11
\end{cases}$$
Augmented matrix
$$\begin{bmatrix}
3 & -2 & 1 & 5 \\
1 & 3 & -1 & 0 \\
-1 & 0 & 4 & 11
\end{bmatrix}$$

As you can see the <u>lone</u> constants appear on the <u>right-most</u> column.

Note: It's <u>imperative</u> that you line up the variables carefully.

Example

Write the following system of equation into an augmented matrix.

$$\begin{cases} 6x - 2y - z = 4 \\ x + 3z = 1 \\ 7y + z = 5 \end{cases} - \begin{bmatrix} 6 & -2 & -1 & 4 \\ 1 & 0 & 3 & 1 \\ 7 & 7 & 1 & 5 \end{bmatrix}$$

Using Row Echelon Form

We can now solve system of linear equations using <u>row-echelon form</u>.

The reason simply is that row-echelon form allows us to use substitution

Example

$$0 \neq \frac{2}{N^{3}}$$
 No or Infinitely Many Solutions

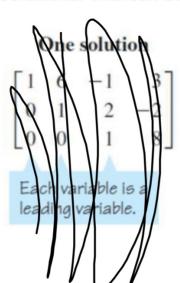
OED inf. sol.

Remember that when solving for a linear system, we may end up with a set of equations that are unsolvable (<u>no real solutions</u>) or equations that have <u>infinitely many</u> solutions. This can be seen in matrices as well.

No solution

1	2	5	7
0	1	3	7 4 1
0	0	0	1

Last equation says 0 = 1.



Infinitely many solutions

$$\begin{bmatrix} 1 & 2 & -3 & 1 \\ 0 & 1 & 5 & -2 \\ \hline (0 & 0 & 0 & 0) \end{bmatrix}$$

z is not a leading variable.

Homework 4/24

TB pg. 674 #25, 31, 35, 37, 39