Period:

Warm Up 3/5

Lesson 7-3: Double-Angle, and Half-Angle Formulas

Objectives

Students will...

- -Be able to know and derive the Double-Angle and Half-Angle formulas of sine, cosine, and tangent.
- -Be able to apply the Double-Angle and Half-Angle formulas.

Double-Angle Formulas

The following formulas are direct results of addition and subtraction formulas. Double-Angle formulas allows us to find the values of the trigonometric functions at 2x from their values at x.

Double-Angle Formulas: For Sine: $\sin(2x) = 2\sin x \cos x$

For Cosine: $\cos(2x) = \cos^2 x - \sin^2 x$ $= 1 - 2 \sin^2 x$ $=2\cos^{2}x-1$

For Tangent: $\tan(2x) = \frac{2\tan x}{1-\tan x}$

Proof of Double-Angle Formulas

Prove the formula: $\cos(2x) = \cos^2 x - \sin^2 x$ Show that $\cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$

Prove the formula: sin(2x) = 2 sin x cos x

Prove the formula: $\tan(2x) = \frac{2 \tan x}{1 - \tan^2 x}$

Name:

Period:

Date:

Using the Double-Angle Formulas

If $\cos x = -\frac{2}{3}$ and x is in quadrant II, find $\cos 2x$, $\sin 2x$, and $\tan 2x$.

Half-Angle Formulas

The next set of formulas relate the values of trig functions at $\frac{1}{2}x$ to their values at x. They are known as the **Half-Angle Formulas**. **Half-Angle Formulas**:

*The choice of + or – depends on which quadrant $\frac{u}{2}$ lies in.

Using Half-Angle Formulas

Find the exact value of $\sin 22.5^\circ$

Find $\tan \frac{u}{2}$ if $\sin u = \frac{2}{5}$ and u is in quadrant II.

Homework 3/5 TB pg. 548 #1-7 (odd), 15, 17, 21, 23, 35, 36, 37