Lesson 7-1b: Trigonometric Identities II

Objectives

Students will...

- Be able to prove or verify trigonometric identities.
- Be able to simplify expressions using trigonometric substitution.

Trigonometric Identities

Before we get any deep into trig analysis, we must first recall some of the basic trigonometric identities and definitions. Primarily,
$\csc x=$
$\sec x=$
$\cot x=$
$\tan x=$
$\cot x=$

Pythagorean Identity:

From this, we also get: and and
and

Methods for Proving Identities

One of the main components of trig analysis is to prove identities. There are \qquad different methods for proving identities:
I. Rewrite \qquad of the sides to match the other side.

$$
\begin{aligned}
& \text { Ex. } \\
& x+3=6\left(\frac{1}{6} x+\frac{11}{6}-\frac{13}{6}+\frac{5}{6}\right)
\end{aligned}
$$

II. Modify \qquad sides until they are the same.
Ex.
$3(2 x-1)=2 x+2\left(2 x-\frac{3}{2}\right)$

Guidelines for Proving Identities

Furthermore, we have some guidelines/tips for proving identities.

1. \qquad : More often than not, identity proofs are more easily done when you work with the side that involves a fraction.
2. \qquad : It's easier to modify the sides that has less sines or cosines. Generally, rewriting everything as sine or cosine can help you when you are "stuck."
3. \qquad : Use algebra and the identities are already known to you. Look to combine multiple fractions into one with a common denominator.

Example

Prove/Verify the identity: $\cos \theta(\sec \theta-\cos \theta)=\sin ^{2} \theta$

Prove/Verify the identity: $\cos x \tan x=\sin x$

Prove/Verify the identity: $2 \tan x \sec x=\frac{1}{1-\sin x}-\frac{1}{1+\sin x}$

Prove/Verify the identity: $\tan \theta+\cot \theta=\sec \theta \csc \theta$

Prove/Verify the identity: $\frac{\cos u}{1-\sin u}=\sec u+\tan u$

