Warm Up 2/6

Lesson 6-4: The Law of Sines

Objectives

Students will...

- Be able to know what Law of Sines is.
- Be able to apply the Law of Sines to solve for missing sides or angles.

Triangles

We've been studying the trigonometric ratios involving right triangles. Trigonometry can also be used for non-right triangles. First thing we need to do is to be consistent with our notations.
Consider the triangle $\triangle A B C$ shown on the right. The uppercase letters A, B, C represent the or the \qquad of the triangle, while the lower case letters a, b, c represent the sides.
For ease, the angles will always be labeled by uppercase letters, while the side \qquad angle will always be labeled with the lowercase letter of the opposite angle.

So, from our picture, we see that a is the side opposite to A, while b is the side opposite to B and c is the side opposite to C.

Law of Sines

There exists and important law regarding triangles (not just right triangles) derived from its \qquad -.
Law of Sines- For any triangle the lengths of its sides are proportional to the sines of the corresponding opposite angles. Namely, for $\triangle A B C$:

Ex.

For the $\triangle A B C$ to the left, we have...

So we can apply the Law of Sines to solve for missing sides or angles.
(Important: Make sure your calculator is in the right mode!)

Find a and b.

Solve the triangle (i.e. find all missing sides and angles).

Ambiguous Cases: Two solutions

The two previous examples had \qquad known \qquad . There may be a case where we might only have \qquad known \qquad , but with \qquad known \qquad . In either case, Law of Sines can be applied to solve the triangle. However, one important thing to bear mind here is the fact there may be \qquad , or even \qquad correct answer when the Law of Sines is applied with one known angle and two known sides. Consider the following: Solve triangle $\triangle A B C$ if $\angle A=43.1^{\circ}, a=186.2$, and $b=248.6$

Ambiguous Cases: One solution

Now consider: Solve triangle $\triangle A B C$ if $\angle A=45^{\circ}, a=7 \sqrt{2}$, and $b=7$

Ambiguous Cases: No solution

Now consider: Solve triangle $\triangle A B C$ if $\angle A=42^{\circ}, a=70$, and $b=122$

General Guideline: Law of Sines

Law of Sines:
\qquad and \qquad known: Only ___ possible outcome.
\qquad and \qquad known:

Case I- \qquad outcome (angle measure of triangles cannot exceed \qquad _)

Case II- \qquad possible outcomes

Case III- \qquad possible outcome (sine of an angle cannot be \qquad _)
ex. $\sin A=1.239 \quad \rightarrow \quad$ no possible solution.

