Period:

# Warm Up 2/6

# Lesson 6-4: The Law of Sines

# Objectives

Students will...

- Be able to know what Law of Sines is.
- Be able to apply the Law of Sines to solve for missing sides or angles.

### Triangles

We've been studying the trigonometric ratios involving right triangles. Trigonometry can also be used for **non**-right triangles. First thing we need to do is to be consistent with our notations.

Consider the triangle  $\triangle ABC$  shown on the right. The uppercase letters A, B, C represent the \_\_\_\_\_

or the \_\_\_\_\_\_ of the triangle, while the lower case letters *a*, *b*, *c* represent the sides.

For ease, the angles will always be labeled by uppercase letters, while the side \_\_\_\_\_

angle will always be labeled with the lowercase letter of the opposite angle.

\_ to each \_\_\_\_\_\_ b

So, from our picture, we see that a is the side opposite to A, while b is the side opposite to B and c is the side opposite to C.

# Law of Sines

There exists and important law regarding triangles (not just right triangles) derived from its <u>Law of Sines</u>- For any triangle the lengths of its sides are proportional to the sines of the corresponding opposite angles. Namely, for  $\Delta ABC$ :

Ex.



For the  $\triangle ABC$  to the left, we have...

#### Example

So we can apply the Law of Sines to solve for missing sides or angles. (Important: Make sure your calculator is in the right mode!) Find *a* and *b*. Solve the triangle (i.e. find all missing sides and angles).





| PreCalculus | Name: | Period: |
|-------------|-------|---------|
|             |       |         |

# **Ambiguous Cases: Two solutions**

| The two prev                                                                          | vious examples had _          | known _                | There may be a case where we might only have                | e                   |  |
|---------------------------------------------------------------------------------------|-------------------------------|------------------------|-------------------------------------------------------------|---------------------|--|
| known                                                                                 | , but with                    | known                  | In either case, Law of Sines can be applied to so           | olve the            |  |
| triangle. However, one important thing to bear mind here is the fact there may be, or |                               |                        |                                                             |                     |  |
| even <u>co</u> co                                                                     | rrect answer when th          | e Law of Sine          | s is applied with <b>one known angle and two known side</b> | <u>s</u> . Consider |  |
| the following                                                                         | g: Solve triangle $\Delta AB$ | C if $\angle A = 43.1$ | $1^{\circ}$ , $a = 186.2$ , and $b = 248.6$                 |                     |  |

### Ambiguous Cases: One solution

Now consider: Solve triangle  $\triangle ABC$  if  $\angle A = 45^{\circ}$ ,  $a = 7\sqrt{2}$ , and b = 7

Ambiguous Cases: No solution

Now consider: Solve triangle  $\triangle ABC$  if  $\angle A = 42^{\circ}$ , a = 70, and b = 122

**General Guideline: Law of Sines** 

Law of Sines:

\_\_\_\_\_\_and \_\_\_\_\_\_known: Only \_\_\_\_possible outcome. \_\_\_\_\_\_and \_\_\_\_\_\_known:

Case I- \_\_\_\_\_ outcome (angle measure of triangles cannot exceed \_\_\_\_\_)

Case II-\_\_\_\_possible outcomes

Case III- \_\_\_\_ possible outcome (sine of an angle cannot be \_\_\_\_\_) ex. sin  $A = 1.239 \rightarrow$  no possible solution.

> Homework 2/6 TB pg. 506 #1, 3, 5, 11, 15, 17, 19, 21, 23, 25

Date: