Lesson 6-2: Trigonometry of Right Triangles

Objectives

Students will...

- Be able draw, set up, and solve right triangles using trigonometric ratios.
- Be able to understand solve word problems involving right triangles using trigonometric ratios.

Trigonometric Ratios

Recall the trigonometric ratios we've learned in the past.
Trigonometric Ratios \qquad
\qquad C \qquad T _"
$\sin \theta=$
$\cos \theta=$
$\tan \theta=$
$\csc \theta=$
$\sec \theta=$
$\cot \theta=$

Remember, these ratios only apply to \qquad triangles.

Example
$\sin \theta=$
$\cos \theta=$
$\tan \theta=$
$\csc \theta=$
$\sec \theta=$
$\cot \theta=$

Solving Right Triangles

Using these ratios, we can solve for missing angles or sides of right triangle. (Be sure to identify whether the angles are in radian or degree)
Find x .

Sketch a triangle that has acute angle θ, and find the other five trigonometric ratios of θ.
a) $\cos \frac{61}{80}$
b) $\tan \frac{373}{100}$
c) $\sin \frac{2}{3}$

Special Right Triangles

Also resulting from applying trigonometric ratios, we have what are called, \qquad right triangles. Triangle

Example

Application of Trigonometric Ratios

We can also solve word problems using these ratios.
A giant redwood tree casts a shadow that is 532 ft long. Find the height of the tree if the angle of elevation of the sun is 25.7°.

A giant redwood tree has a height of 176 ft . If the angle of elevation of the sun is 12.3°, what is the length of the tree's shadow?

A 40 ft ladder leans against a building. If the base of the ladder is 6 ft from the base of the building, what is the angle formed by the ladder and the building?

A 50 ft ladder leans against a building. If the base of the ladder is 7 ft from the base of the building, what is the angle formed by the ladder and the ground?

Homework 2/3
TB pg. 484 \#9, 11, 17, 18, 29, 31, 33, 45, 51

