Lesson 5-3: Trigonometric Graphs III

Objectives

Students will...

- Be able to identify and graph the shift of sine and cosine functions.

Standard Equation of Sine and Cosine Curves

Like any other functions, there exists a standard equation of both sine and cosine curves.

Sine Curves: Any equation of a sine curve is written in the form:

$$
y=
$$

\qquad where a and k are \qquad with $k>0$

Cosine Curves: Any equation of a cosine curve is written in the form:

$$
y=
$$

\qquad where a and k are \qquad with $k>0$

Period and Amplitude of Sine and Cosine Curves

In our previous lesson we simply used the graph to figure out the period and amplitude of a given sine or cosine curve. However, we may not (more of than not) have a graph to refer to. In fact, how would we find the period if we were asked to graph a given sine or cosine curve? Of course, we can use the $x-y$ table to graph the curve first, but this isn't always practical. Fortunately, finding the period and the amplitude of a sine or cosine curve can be found algebraically from their equation.

For sine and cosine curves of the form: $y=a \sin k x \quad$ and $\quad y=a \cos k x$,
$\underline{\text { Period }}=$ \qquad Amplitude $=$ \qquad

Horizontal and Vertical Shift

Recall from chapter 2 about the shift of parabolas. The standard equation of a parabola is $y=x^{2}$. Now, consider... Ex.

$$
y=x^{2} \quad y=(x-4)^{2}-9
$$

Vertex:

Shift:

Horizontal and Vertical Shift

Believe it or not, trig functions (along with many other functions) take the similar format when it comes to their shifts.
Ex.
$y=\cos x$
$y=\cos \left(x-\frac{\pi}{2}\right)+1$

Period:
Amplitude:
Shift:
Start/End Point:

Example
Let's graph the two and compare. $y=\cos x, y=\cos \left(x-\frac{\pi}{2}\right)+1$

Example
Believe it or not, trig functions (along with many other functions) take the similar format when it comes to their shifts.
Ex.
$y=\sin x$

$$
y=3 \sin 2\left(x-\frac{\pi}{4}\right)
$$

Period:
Amplitude:
Shift:
Start/End Point:

Example
Let's graph the two and compare. $y=\sin x, y=3 \sin 2\left(x-\frac{\pi}{4}\right)$

Guidelines to Graphing

1. Identify
2. Find
3. Find
4. Identify
5.
