Period:

Warm Up 1/22

Lesson 5-3: Trigonometric Graphs III

Objectives

Students will...

- Be able to identify and graph the shift of sine and cosine functions.

Standard Equation of Sine and Cosine Curves

Like any other functions, there exists a standard equation of both sine and cosine curves.

Sine Curves: Any equation of a sine curve is written in the form:

y = _____, where a and k are _____ with k > 0

Cosine Curves: Any equation of a cosine curve is written in the form:

y = ______, where a and k are ______ with k > 0

Period and Amplitude of Sine and Cosine Curves

In our previous lesson we simply used the graph to figure out the period and amplitude of a given sine or cosine curve. However, we may not (more of than not) have a graph to refer to. In fact, how would we find the period if we were asked to graph a given sine or cosine curve? Of course, we can use the x-y table to graph the curve first, but this isn't always practical. Fortunately, finding the period and the amplitude of a sine or cosine curve can be found algebraically from their equation.

For sine and cosine curves of the form: $y = a \sin kx$ and $y = a \cos kx$, <u>Period</u> = _____ Amplitude = _____

Horizontal and Vertical Shift

Recall from chapter 2 about the shift of parabolas. The standard equation of a parabola is $y = x^2$. Now, consider...

Ex.

$$y = x^2$$
 $y = (x - 4)^2 - 9$

Vertex:

<u>Shift:</u>

Name:

Period:

Horizontal and Vertical Shift

Believe it or not, trig functions (along with many other functions) take the similar format when it comes to their shifts.

Ex.

 $y = \cos x \qquad \qquad y = \cos(x - \frac{\pi}{2}) + 1$

Period: Amplitude: Shift: Start/End Point:

Example Let's graph the two and compare. $y = \cos x$, $y = \cos \left(x - \frac{\pi}{2} \right) + 1$

Example Believe it or not, trig functions (along with many other functions) take the similar format when it comes to their shifts.

Ex.

 $y = \sin x$

Period: Amplitude: Shift: Start/End Point:

Example Let's graph the two and compare. $y = \sin x$, $y = 3 \sin 2 \left(x - \frac{\pi}{4} \right)$

Guidelines to Graphing

- 1. Identify
- 2. Find
- 3. Find
- 4. Identify
- 5.

Homework 1/22 TB pg. 429 #1, 11, 19, 27, 33, 36 (<u>Be sure to graph!</u>)

 $y = 3\sin 2(x - \frac{\pi}{4})$