Warm Up 1/07

Lesson 5-3: Trigonometric Graphs II

Objectives

Students will...

- Be able to know what the standard equation of a sine and a cosine curve is.
- Be able to find the period and the amplitude of a sine or a cosine function algebraically.

Periodic Behavior of \sin and cos

Before we can graph sin and cos functions, we need to take a closer look at their behavior.
One common behavior that we can quickly spot for any trigonometric function is the \qquad of the values.
Ex: $\quad \sin 0=0=\sin 2 \pi, \sin \frac{\pi}{2}=1=\sin \frac{5 \pi}{2}$, etc. $\quad \cos 0=1=\cos 2 \pi, \cos \frac{\pi}{2}=0=\cos \frac{5 \pi}{2}$, etc.

For this reason, \sin and cos functions are said to be \qquad . This is why the unit circle is perfect for representing their values, because every circle is periodic (i.e. \qquad _).

Standard Equation of Sine and Cosine Curves

Like any other functions, there exists a standard equation of both sine and cosine curves.

Sine Curves: Any equation of a sine curve is written in the form:
$y=$ \qquad where a and k are \qquad with $k>0$

Cosine Curves: Any equation of a cosine curve is written in the form:

$$
y=
$$

\qquad where a and k are \qquad with $k>0$

Period and Amplitude of Sine and Cosine Curves

In our previous lesson we simply used the graph to figure out the period and amplitude of a given sine or cosine curve. However, we may not (more of than not) have a graph to refer to. In fact, how would we find the period if we were asked to graph a given sine or cosine curve? Of course, we can use the $x-y$ table to graph the curve first, but this isn't always practical.
Fortunately, finding the period and the amplitude of a sine or cosine curve can be found algebraically from their equation.
For sine and cosine curves of the form: $y=a \sin k x \quad$ and $\quad y=a \cos k x$,
$\underline{\text { Period }}=$ \qquad Amplitude $=$ \qquad

Example

Find the period and amplitude of each function.

1. $y=4 \cos 3 x$
2. $y=-2 \sin \frac{1}{2} x$
3. $y=2 \cos 3 x$
4. $y=\pi \sin 4 x$
