Period:

Warm Up 12/5

Lesson 5-2c: Trigonometric Functions of Real Numbers III

Objectives

Students will...

- Be able to rewrite trigonometric functions using the fundamental identities.
- Find all trigonometric functions from the value of one using the fundamental identities.

Soh Cah Toa

Recall that given a right triangle...

 $\sin t = \cos t = \tan t = \csc t = \frac{1}{\sin t} =$ $\sec t = \frac{1}{\cos t} = \cot t = \frac{1}{\tan t} =$

We can use the properties of right triangles to figure out the rest of the trigonometric functions.

 $\sin t = -\frac{4}{5}$ $\cos t = \frac{3}{5}$ $\tan t = \csc t = \sec t = \cot t =$

If $\cos t = -\frac{5}{13}$ and t is in quadrant II, find the values of all the trigonometric functions at t.

Trigonometric Functions

Recall from the definitions of trigonometric functions that...tan t = cot t

Coordinates on a Unit Circle

Now, also recall that on the unit circle, we defined the following: $\cos t = \sin t = \rightarrow \qquad (x, y) =$ Now, let's see how this can be applied on a unit circle.

Pythagorean Identities

Hence, we can now conclude the following identities: **Pythagorean Identities:** (Note: $sin^2t = (sin t)^2$)

> Also, moving some of these around using algebra: $\sin t = \pm \qquad \cos t = \pm$

Rewriting Trigonometric Functions

We can also rewrite trigonometric functions using others. Example: Write $\tan t$ in terms of $\cos t$, where t is in quadrant III.

Write tan t in terms of sin t, where t is in quadrant I.

Write $\sec t$ in terms of $\tan t$, where t is in quadrant II