Warm Up 12/5

Lesson 5-2c: Trigonometric Functions of Real Numbers III

Objectives

Students will...

- Be able to rewrite trigonometric functions using the fundamental identities.
- Find all trigonometric functions from the value of one using the fundamental identities.

Soh Cah Toa

Recall that given a right triangle...

$$
\begin{array}{lll}
\sin t= & \cos t= & \csc t=\frac{1}{\sin t}= \\
\sec t=\frac{1}{\cos t}= & \cot t=\frac{1}{\tan t}=
\end{array}
$$

We can use the properties of right triangles to figure out the rest of the trigonometric functions.
$\sin t=-\frac{4}{5} \quad \cos t=\frac{3}{5} \quad \tan t=\quad \csc t=\quad \sec t=\quad \cot t=$

If $\cos t=-\frac{5}{13}$ and t is in quadrant II, find the values of all the trigonometric functions at t.

Trigonometric Functions

Recall from the definitions of trigonometric functions that...
$\tan t=\cot t=\quad \sec t=\quad \csc t=$

Coordinates on a Unit Circle

Now, also recall that on the unit circle, we defined the following:
$\cos t=\quad \sin t=\quad \rightarrow \quad(x, y)=$

Now, let's see how this can be applied on a unit circle.

Pythagorean Identities

Hence, we can now conclude the following identities:
Pythagorean Identities: (Note: $\left.\sin ^{2} t=(\sin t)^{2}\right)$

Also, moving some of these around using algebra:

$$
\sin t= \pm \quad \cos t= \pm
$$

Rewriting Trigonometric Functions

We can also rewrite trigonometric functions using others.
Example: Write $\tan t$ in terms of $\cos t$, where t is in quadrant III.

Write $\tan t$ in terms of $\sin t$, where t is in quadrant I.

Write $\sec t$ in terms of $\tan t$, where t is in quadrant II

