12/2

Lesson 5-2: Trigonometric Functions of Real Numbers

Objectives

Students will...

- Be able to know that the coordinates of radians, $(x, y)=(\cos t, \sin t)$
- Be able to evaluate trigonometric functions in radians.

Trigonometric Functions

The concept of trigonometric functions can be defined in terms of the unit circle. The definition of trigonometric functions is as follows:

$$
\begin{array}{lll}
\cos t=x & \sin t=y & \tan t=\frac{y}{x}(x \neq 0) \\
\sec t=\frac{1}{\cos t}= & \csc t=\frac{1}{\sin t}= & \cot t=\frac{1}{\tan t}= \\
(x \neq 0) & & (y \neq 0)
\end{array}
$$

Evaluating Trigonometric Functions

We have computed the (x, y) coordinate for each of the values on the unit circle. Based on our definition above, $(x, y)=(\cos t, \sin t)$. Consider the following units on the unit circle (Note that we are in radians):
$0=(1,0) \quad \rightarrow \quad \cos 0=\quad, \sin 0=\quad, \tan 0=$
$\frac{\pi}{4}=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \quad \rightarrow \quad \cos \frac{\pi}{4}=\quad, \sin \frac{\pi}{4}=\quad, \tan \frac{\pi}{4}=$

Examples

$\frac{\pi}{3}=(\quad, \quad) \quad \rightarrow$

$$
\frac{\pi}{4}=(\quad, \quad) \quad \rightarrow
$$

$\frac{\pi}{2}=(\quad, \quad) \quad \rightarrow$

$$
\frac{2 \pi}{3}=(\quad, \quad) \rightarrow
$$

$\frac{5 \pi}{4}=(\quad, \quad) \rightarrow$
$\frac{3 \pi}{2}=(\quad, \quad) \rightarrow$
csc, sec, cot
For the following, give the values for $\csc t, \sec t$, and $\cot t$
$\frac{4 \pi}{3}=(\quad, \quad)$

