Trigonometric Functions of Real Numbers

Objective

Students will...

- Be able to know that the coordinates of radians, $(x, y) = (\cos t, \sin t)$
- Be able to evaluate trigonometric functions in radians.

60°.

Soh Can ton Trigonometric Functions

The concept of trigonometric functions can be defined in terms of the unit circle. The definition of trigonometric functions is as follows: t-deg., radians

 $(y \neq 0)$

$$\sin t = y$$

$$\tan t = \frac{y}{x} \ (x \neq 0)$$

$$\sec t = \frac{1}{\cos t} = \frac{1}{x} \qquad \csc t = \frac{1}{\sin t} = \frac{1}{y} \qquad \cot t = \frac{1}{\tan t} = \frac{x}{y}$$

$$(x \neq 0) \qquad (y \neq 0)$$

$$\cot t = \frac{1}{\tan t} = \frac{x}{y}$$

Evaluating Trigonometric Functions

We have computed the (x,y) coordinate for each of the values on the unit circle. Based on our definition above, $(x,y)=(\cos t\,,\sin t)$. Consider the following units on the unit circle (Note that we are in <u>radians</u>):

Consider the following units on the unit circle (Note that we are in radians):
$$0 = (1,0) \rightarrow \cos 0 = \begin{cases} \sin 0 = 0 \\ \sin 0 = 0 \end{cases}, \tan 0 = \frac{2}{\sqrt{2}} \rightarrow 0$$

$$\frac{\pi}{4} = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) \rightarrow \cos \frac{\pi}{4} = \frac{2}{\sqrt{2}}, \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \tan \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

$$\sec 0 = \frac{1}{\cos 0} = \frac{1}{\sqrt{2}}, \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \tan \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

$$\sec 0 = \frac{1}{\cos 0} = \frac{1}{\sqrt{2}}, \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \tan \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

$$\sec 0 = \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \cot \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \tan \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

$$\sec 0 = \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \cot \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \cot \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

$$\sec 0 = \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \cot \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \cot \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \cot \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

$$\sec 0 = \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \cot \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

$$\frac{\pi}{3} = (\frac{1}{2}, \frac{\sqrt{3}}{2}) \rightarrow \cos \frac{\pi}{3} = \frac{1}{2} \quad \sin \frac{\pi}{3} = \frac{1}{2} \quad \cot \frac{\pi}{3$$

$$\frac{2\pi}{3} = (2, \frac{1}{2}) \rightarrow \cos \frac{2\pi}{3} = -\frac{1}{2} \quad \sin \frac{7\pi}{3} - \frac{1}{2} \quad (m_3 - \frac{1}{2} - \frac{1}{2})$$

$$\sec \frac{2\pi}{3} - 2 \quad \csc \frac{2\pi}{3} - \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}$$

$$\frac{5\pi}{4} = (,) \rightarrow$$

$$(t + \frac{2\pi}{3} - \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1$$

 $\frac{11\pi}{6} = ($, $) \rightarrow$

csc, sec, cot

For the following, give the values for $\csc t$, $\sec t$, and $\cot t$

$$\frac{4\pi}{3} = (,)$$

Homework 12/16

TB pg. 416 #3, 4, 8, 9, 14, 18