## 12/1

## Lesson 5-1: Unit Circle

## Objective

Students will...

- Be able to complete the Unit Circle


## Degree vs Radians

We are generally familiar with the fact that circles measure $\qquad$ . This idea is seen and used often. We can also view it as one revolution around a circle totals $360^{\circ}$, and halfway around the circle is $180^{\circ}$ and so on. We can easily fill these into the unit circle.
Now, a unit circle can also be measured in a different way. This scale of measure is known as $\qquad$ . The formation of radian measurement arises from trigonometry, but the basic idea of it is that a full revolution around the circle is $2 \pi$, which makes $\pi$ halfway around the circle. We can now fill in the rest. For example, we know that $30^{\circ}=\frac{1}{3}\left(90^{\circ}\right)$, so if we know that $90^{\circ}=\ldots$, then $30^{\circ}=\frac{1}{3}\left(\frac{\pi}{2}\right)=\frac{\pi}{6}$

## Coordinates on the Unit Circle

A Unit Circle also has coordinates associated to each radian or degree. These coordinates are derived from the standard equation of the unit circle: $\qquad$ . Although for the most part this process is rather complicated, there are few coordinates that are simple enough for us to observe. First and foremost, the starting point ( 0 ) has coordinates $(1,0)$. We can fill in the other trivial locations $\left(\frac{\pi}{2}, \pi, \frac{3 \pi}{2}\right)$.

Now, consider the location, $\frac{\pi}{4}$ or $45^{\circ}$ on the unit circle:

For the others, the calculations are rather tedious and rigorous, so we will simply resort to memorizing. Let us now fill in the coordinates for the first quadrant, 0 to $\frac{\pi}{2} . \quad \frac{\pi}{6}=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \quad \frac{\pi}{4}=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \quad \frac{\pi}{3}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
Although we must fill in the rest of the circle, we really only need to memorize the first quadrant, and simply use it as a reference for the remaining units. The technique here is to use terminal reference units: $\pi$ for units less than $\pi$ (or fraction is less than 1 ), and $2 \pi$ for units greater than $\pi$.

Example:
$\frac{2 \pi}{3}$ : Since $\frac{2 \pi}{3}<\pi$ or $\left(\frac{2}{3}<1\right)$, we use $\pi$. So, $\pi-\frac{2 \pi}{3}=\frac{\pi}{3}$, which means we use the coordinates $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
The only thing left to do now is to figure out the signs based on which quadrant it is in. We can see that $\frac{2 \pi}{3}$ is in the second quadrant, since $\frac{\pi}{2}<\frac{2 \pi}{3}<\pi$. Thus, the coordinates are $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.

