Period:

Warm Up 12/02

Lesson 4-2: Logarithmic Functions II

Objective

Students will...

- Be able to define natural logarithmic function.
- Be able to know and apply the properties of natural logarithms.
- Be able to use calculators to compute natural logarithms.

Natural Logarithms

We've learned that any logarithm with base 10 is known as the *common* logarithm, without the base written. In our previous section of exponential function, we learned about a very special number denoted, *e*. Naturally (no pun intended as we'll see), logarithms with base *e* is also considered special, and it is given a special name.

<u>Natural Logarithm</u>- The logarithm with base *e* is called the <u>natural logarithm</u> and is denoted by <u>In</u>:

$$\ln x = log_e x$$

The Inverse of Exponential Function

Like all other exponential and logarithmic functions, the natural logarithmic function $y = \ln x$ is the inverse function of the exponential function $y = e^x$. Hence, by definition we have

$$\ln x = y \leftrightarrow e^y = x$$

Example:

$$e^{6} \approx 403.43 \rightarrow \ln 403.43 \approx 6$$

 $\ln 8 \approx 2.08 \rightarrow e^{2.08} \approx 8$

Date:

Properties of Natural Logarithms

We have learned about some of the basic properties of logarithms. Always remember that, although it's given a special name, natural logarithms is still a logarithmic function! Thus, the properties of natural logarithm naturally (again, no pun intended) follow the properties of logarithms. Simply replace a with e and log_a with ln.

PropertyReason1. $\ln 1 = 0$ Anything raised to the zero power is 12. $\ln e = 1$ Anything raised to the 1st power is itself3. $\ln e^x = x$ e raised to the x power is e^x 4. $e^{\ln x} = x$ $\ln x$ is the power to which e must be raised to get x

Examples

You try

Using a Calculator

For most logarithmic, as well as exponential functions, we've learned that having a calculator is a must. Computing natural logarithm on a calculator is easy. We simply need to find where the ln button is. Almost all calculators place e^x and ln together (usually "2nd" e^x).

Example: To compute ln 5, we would input "2nd" e^x , then "5". The answer should read: ln 5 = 1.6094379124341

In Closing

Compute the following natural logarithms using a calculator and check your answers with a partner.

1) $\ln 4 =$	2) $2 \ln 9 =$	$3) 9 \ln 11 =$
1) III I —	2/2/11//	5/ / 11 -

Homework 12/02 TB pg. 349-350 #7, 8, 13, 14, 22a, 23b, 23c, 35, 36