Lesson 4-1 $\Delta < 0$ **Exponential Functions III**

Objective

Students will...

- Be able to derive the exponential function from a given graph
- Be able to recognize the base e.
- Be able to solve interest problems using the natural exponential function, $f(x) = e^x$

Exponential Functions

In our previous chapter, we studied polynomial and rational functions. Yet another important and practical function group is the exponential function.

The <u>exponential function</u> with base a is defined for all real numbers by $f(x) = a^x$, where a > 0 and $a \ne 1$.

Deriving Exponential Functions

With that said, we can also find the equation of the functions from the given graphs. The idea is to use the exponential definition,

Examples

Find the exponential function $f(x) = a^x$ whose graph is given.

1.

The Natural Exponential Functions

In studying exponential functions, there is a very special number that is studied, mainly because of its use virtually on a daily basis out in the real world. It is a called the *Natural* exponential function, denoted as e

So, by definition, the <u>natural exponential function</u> is the exponential function

$$f(x) = e^x$$
, where the base $e \approx 2.71828 \dots$

By definition e is the value that $\left(1+\frac{1}{n}\right)^n$ approaches as $n\to\infty$

This will be studied much more extensively in Calculus. For this course, our focus is simply using this strange number via a calculator ©

<

Compound Interest

The question may be why use such a strange and random base? Actually, it turns out that this little e has much use out in the real world. Again, in Calculus you will see that e isn't all that "random," and have a better idea why e has so much use out in the real world. Here's an example: Calculating Compound Interest! Ka-ching!

Compound Interest is calculated by the formula: $A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$

where

A(t) = the amount after t years

P = the Principal amount (initial amount put in)

r = the interest rate per year

n =the number of times interested is compounded per year

t =the number of years

Example

A sum of \$1000 is invested at interest rate of 12% per year. Find the amounts in the account after 3 years if interest is compounded annually, semiannually, quarterly, monthly, and daily.

Here we need to use our compound interest formula.

A(t) = P(1+1)

Annually: $|000(1+\frac{0.12}{3.65})(3)$ Daily: $|000(1+\frac{0.12}{3.65})(3)$ $|000(1+\frac{0.12}{3.65})(3)$

Continuously Compounded Interest

For some accounts, the interest is compounded continuously, rather than periodically (like our previous problem). For this kind of compounding, the formula is actually much simpler.

Continuously Compounded Interest is calculated by,

$$A(t) = Pe^{rt}$$
 where,

A(t) = the amount after t years

P =the Principal amount (initial amount put in)

r = the interest rate per year

t =the number of years

Example

Find the amount after 3 years if \$1000 is invested at an interest rate of 12% per year, compounded continuously.

$$A(t) = Pe^{rt}$$

$$(1000) e^{(.12)(3)} = 1433.33$$

Homework 11/15

TB pg. 336, 340 #15-18, 77(a, b, c, e, g), 81