10/29

Lesson 3-6: Rational Functions

Objective

Students will...

- Be able to understand what rational functions are and their behaviors.
- Be able to find the x and the y intercepts of rational functions.

Rational Functions

Whenever we hear the word "rational" in mathematics, it'd be safe to say many of us think of fractions. Hence, a rational function would be most commonly described as a "fractional" function. This is in essence true! A rational function is a function of the form $r(x)=$, where P and Q are polynomials. We are also assuming that $P(x)$ and $Q(x)$ have no factor in common, i.e. they are completely \qquad _.

Behaviors of Rational Functions

Rational functions are often given special attention because, while they fit the standard definition of a function (one output for every input), they are quite unique in terms of their \qquad and \qquad . Consider the following rational function, $f(x)=\frac{1}{x}$
We can already see that there is something we need to make sure of, and that is the fact that $x \neq \quad$, since a fraction is not defined when the denominator is a zero.

Also, as x or the denominator \qquad the overall function \qquad and as x or the denominator \qquad the overall function \qquad ـ.

Ex. $\quad \frac{1}{2}>\frac{1}{12}>\frac{1}{45667}$

So, the behavior of this rational function, $f(x)=\frac{1}{x}$ can be written as,
$\lim _{x \rightarrow \infty} f(x)=0 \quad$ and $\quad \lim _{x \rightarrow 0} f(x)=\infty$
"The limit \qquad
"The limit \qquad $"$

X and the Y-Intercepts of Rational Functions

Although we have observed how rational functions behave in a unique way, the concept of finding the x and the y intercepts remain the same for all functions.

Ex. Find the x and the y -intercepts of the function $f(x)=\frac{x-2}{3}$
Y-int:
X-int:

Example
Find the x and the y intercepts of the following rational functions

1. $f(x)=\frac{1}{x}$
2. $r(x)=\frac{x}{2}$
3. $g(x)=\frac{x-5}{x-2}$
4. $f(x)=\frac{x^{2}-3 x-18}{x+4}$
5. $r(x)=\frac{x^{2}+6}{2}$
