10/28

Lesson 3-5b: Complex Zeros II

Objective

Students will...

- Be able to find polynomials with specified zeros.
- Be able to understand what Conjugate Zeros Theorem says and use it to find polynomials.

Finding Polynomials with Specified Zeros

We have been learning how to factor a polynomial in order to find its zeros. The backward process can also be done. Consider a polynomial P with zeros 0 and -3 . Based on what we know about factored polynomials. These zeros can be derived from $\quad P(x)=x(x+3)$
So, when we multiply it out, $P(x)=x^{2}+3 x$
Hence, if the degree of the polynomial is known, along with its zeros, we can derive the original function.

Example
Find a polynomial $Q(x)$ of degree 4 , with zeros -2 and 0 , where -2 is a zero of multiplicity 3 . Note: $(A+B)^{3}=\left(A^{3}+3 A^{2} B+3 A B^{2}+B^{3}\right)$

Find a polynomial $P(x)$ of degree 4 , with zeros $i,-i, 2$, and -2 .

Conjugate Pairs

There is an interesting thing to observe regarding conjugates of complex numbers.

Conjugate Zeros Theorem-

In other words, if a certain $a+b i$ is a zero (x-intercept) of a polynomial, then its conjugate,
is also a zero.

Example
Find a polynomial $P(x)$ of degree 3 that has integer coefficients and zeros $\frac{1}{2}$ and $3-i$.

