10/16

Lesson 3-2: Dividing Polynomials

Objective

Students will...

- Be able to use long division and synthetic division to divide a polynomial.
- Be able to identify the dividend, divisor, quotient, and the remainder after dividing a polynomial using long division.
- Be able to know and use the Remainder and Factor Theorem.

End Behavior

Polynomials can also be studied extensively using algebra. From our experience with graphing, we realized that factoring is a powerful tool when it comes to studying polynomials. Recall that factoring really is \qquad _.

Hence, to factor, we must learn how to divide polynomials. Dividing polynomials is much like dividing numbers.

$$
\text { Ex. } \quad \frac{38}{7}=5+\frac{3}{7}
$$

When we divide 38 by 7 , we end up with a \qquad of 5 and the \qquad of $\frac{3}{7}$

Long Division

Much like how we first learned how to divide numbers, we can use long division to divide polynomials. Example: \quad Divide $6 x^{2}-26 x+12$ by $x-4$.

So, we are done when the long division ends with a polynomial that is of \qquad degree than what we divided by. In our case, we divided by $x-4$ (degree 1) and ended up with 4 (degree 0). So, we can interpret our result in two ways:

$$
\begin{equation*}
\frac{6 x^{2}-26 x+12}{x-4}=\quad \text { Or } \quad 6 x^{2}-26 x+12= \tag{Or}
\end{equation*}
$$

Example
For the following, find the quotient and remainder using long division.

1. $\frac{x^{2}-6 x-8}{x-4}$
2. $\frac{x^{3}+3 x^{2}+4 x+3}{3 x+6}$
3. $\frac{2 x^{5}-7 x^{4}-13}{4 x^{2}-6 x+8}$

Synthetic Division

Although long division will always get the job done with dividing polynomials, \qquad division is a quicker method. The only drawback to synthetic division is that it can only be used when the divisor is of the form
. Here are few things to keep in mind when using synthetic division:

- We only need to use the \qquad of each term.
- Need to make sure to include " \qquad " in places where a degree term is missing. For example, for polynomial $x^{3}+x-7$, the coefficient we use would be $1,0,1,-7$ (0 for the degree 2 term).
- For our divisor $x-c$ the constant we use as our divisor is $-c$. For example, for divisor $x-8$, the constant we use would be $-(-8)=8$.

Example

Divide $2 x^{3}-7 x^{2}+5$ by $x-3$ using synthetic division.

Use synthetic division to divide $\mathrm{P}(\mathrm{x})=5 x^{3}-2 x^{2}+x-10$ by $x-3$

Remainder Theorem

Synthetic division is useful because it can sometimes cut time on evaluating polynomials.
The Remainder Theorem- If polynomial $P(x)$ divided by $x-c$, then the remainder is the value of \qquad -
So, applying to our previous example, we know that 110 (the remainder) is the value of $P(3)$.

Example

Let $P(x)=3 x^{5}+5 x^{4}-4 x^{3}+7 x+3$. Divide by $x+2$ using synthetic division. Then, use the remainder theorem to evaluate $P(-2)$.

Factor Theorem

The last theorem to observe in this section is \qquad Theorem, which says that zeros of polynomials correspond to factors.

The Factor Theorem- c is a zero of P if and only if is a factor of $P(x)$.
So, if a certain c is a zero of any polynomial, performing either long division or synthetic division by the divisor $x-c$ should yield \qquad remainder (or remainder 0).

Example
Use the Factor Theorem to show that $x-c$ is a factor of $P(x)=x^{3}-3 x^{2}+3 x-1, c=1$ and factor completely to find all the zeros.

