10/13

Lesson 3-1c: Polynomial Functions and their Graphs II

Objective

Students will...

- Be able to find and apply the multiplicity of each zero to graph polynomial functions.

End Behavior

Shape of the Graph Near a Zero
As we can observe from various graphs, we see that some \qquad the x-axis, while some do not. For example,
This cubic graph crosses the x-axis 3 times.

This parabola never crosses the x-axis.

Note: Touching and crossing are different things!
In fact, some graphs contain a \qquad of crossing and no crossing behavior. Consider,

Here, we can see that while the graph crosses the x-axis at the two ends, it does not cross the x-axis in the middle. (Note: the graph is still \qquad the x-axis in all places, so they are still considered as zeros of the graph).

Crossing Behavior

We can also observe a nice pattern regarding the x-axis crossing behaviors of polynomial graphs. The pattern has to do with the \qquad of every zero, i.e. the exponent attached to them.

Example: $\quad P(x)=x^{4}(x-2)^{3}(x+1)^{2}$
For the above polynomial function $P(x)$, its zeros are \qquad . The multiplicity of these zeros is the exponent that is attached to each of them. So, the x-intercept 0 has the multiplicity of \qquad , while 2 has the multiplicity of \qquad , and -1 has the multiplicity of \qquad .

Multiplicity and the Crossing Behavior

With that said, the pattern regarding the x-axis crossing behavior is as follows,
For every \qquad multiplicity, the graph at that particular x-intercept, will cross the x-axis.
For every \qquad multiplicity, the graph at that particular x-intercept, will not cross the x-axis.

So from our previous example, since the x-intercepts 0 and -1 had an even multiplicity, the graph will not cross the x-axis at those points. In contrast, at the intercept 2 , the graph will cross the x-axis because it had an odd multiplicity.

Graphing Polynomials

How is this useful? Well, understanding where the graph does and doesn't cross the x-axis will seriously aid in graphing the polynomials.
Example: Graph the polynomial, $P(x)=x^{4}(x-2)^{3}(x+1)^{2}$
Zeros:

Y-intercept:

Degree:

+ or - ?:
End Behavior:
Graph the polynomial: $\quad R(x)=(x-1)^{2}(x-2)(x-5)^{3}$
Zeros:
Y-intercept:
Degree:
+ or - ?:
End Behavior:

Graph the polynomial: $\quad \mathrm{T}(x)=-x^{4}+3 x^{3}-2 x^{2}$
Zeros:
Y-intercept:
Degree:

+ or - ?:
End Behavior:

Local Extrema (Maxima and Minima)

The last thing to observe in this section is the \qquad . Extrema refers to both maxima and minima of a graph. For Example,

Local Extrema Principle

We can see that this graph contains \qquad local extrema.

The \qquad states that for every polynomial of degree, n, the graph has at most $n-1$ local extrema.

So for example, $\mathrm{T}(x)=-x^{4}+3 x^{3}-2 x^{2}$, can have no more than local extrema. We can see this on our graph.

Also, $P(x)=x^{4}(x-2)^{3}(x+1)^{2}$, can have no more than
local extrema. We can also see this on our graph.

The key word here is of course, "at most." Hence, a polynomial can have less than $n-1$ local extrema. In fact, standard function $P(x)=x^{3}$ does not have any local extrema, while $y=(x+3)(x+1)(x-2)$ has exactly 2 (which is okay since 3-1=2).

