Lesson 3-1 $\Delta < 0$ Polynomial Functions and their Graphs III

Warm Up 10/16

Find the zeros of the following polynomial functions.

1.
$$P(x) = (x - 1)(x + 1)(x - 2)$$

2.
$$Q(x) = -2x^3 - x^2 + x$$

$$-x(2x^2 + x - 1) = 0$$

$$-x(x + 2)(x - 1) = 0$$

$$-x(x + 1)(2x - 1) = 0 \times = -1, 0, 1/2$$

5.
$$P(x) = x^3 + x^2 - x - 1$$

$$X(x+1)-I(X+1)$$

$$(x^{2}-1)(x+1)=0$$

We saw a few distinct natures and patterns involving polynomial graphs. There is also a pattern regarding their end behavior.

Notation:

 $x \to \infty$ means "x becomes large in the positive direction"

 $x \to -\infty$ means "x becomes large in the negative direction"

 $y \rightarrow \infty$ means "y becomes large in the positive direction"

 $y \to -\infty$ means "y becomes large in the negative direction"

For example, consider the following graph.

For
$$y = x, y \to \infty$$
 as $x \to \infty$,
and $y \to -\infty$ as $x \to -\infty$

For
$$y=-x^2$$
, $y\to -\infty$, as $x\to \infty$, as well as $x\to -\infty$

So, we can conclude that polynomials take the following patterns.

END BEHAVIOR OF POLYNOMIALS

The end behavior of the polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ is determined by the degree n and the sign of the leading coefficient a_n , as indicated in the following graphs.

n is even $a_n > 0$

n is even

 $a_n < 0$

n is odd

 $\alpha_n>0$

n is odd

 $a_n < 0$

$$1. P(x) = (x-1)(x+2)$$

$$(x-1)(x+2)$$

$$(x-1)(x+2)$$

$$2. Q(x) = (x-3)(x+2)(3x-2)$$

$$(x-3)(x+2)(3x-2)$$

3.
$$S(x) = \frac{1}{8}(2x^5 + 3x^3)^2$$
4. $R(x) = x^3(x+2)(x^2-3)^2$
 $X = x^3(x+2)(x^2-3)^2$

4.
$$R(x) = x^3(x+2)(x-3)^{\frac{3}{2}}$$

5.
$$Q(x) = x^3 + 3x^2 - 4x - 12$$

6.
$$R(x) = \frac{1}{4}(x+1)^3(x-3)$$

Homework 10/15/13

TB pg. 262 #11-35 (e.o.o)

Describe the end behavior of each.