Warm Up 9/26

Lesson 2-7: Combining Functions

Objective

Students will...

- Be able to add, subtract, multiply, and divide functions.
- Be able to compute the composition of functions.

Adding, Subtracting, Multiplying, and Dividing

There exist sums, differences, products, and quotients within functions. Here are the rules:
Let f and g be functions. Then the functions $f+g, f-g, f g, f / g$ are defined as follows.
$(f+g)(x)=$
$(f-g)(x)=$
$(f g)(x)=$
$\left(\frac{f}{g}\right)(x)=$

Example
Let $f(x)=\frac{1}{x-2}$ and $g(x)=\sqrt{x}$
a. Find the functions $f+g, f-g, f g$.
b. Find $(f+g)(4),(f-g)(4),(f g)(4)$, and $\left(\frac{f}{g}\right)(4)$

Composition of Functions

With functions, there s a very special way of combining them to get a new function. Consider the following,
Let $f(x)=\sqrt{x}$ and $g(x)=x^{2}+1$. We may define a function h as, $h(x)=$
This is called a composition of functions. The \qquad function $f \circ g$ (also called a composition of f and
$g)$ is defined by

$$
(\quad)(x)=f(g(x))
$$

Let $f(x)=x^{2}$ and $g(x)=x-3$
a. Find the functions $f \circ g$ and $g \circ f$
b. Find $(f \circ g)(5)$ and $(g \circ f)(7)$

Let $f(x)=x^{2}$ and $g(x)=x-3$
Find the functions $f \circ f$ and $g \circ g$

