Warm Up 9/18

Lesson 2-5b: Quadratic Function: Maxima and Minima

Objective

Students will...

- Be able to find x and y-intercepts, via factoring, quadratic formula, and completing the square.
- Be able to graph quadratic functions by plotting vertex and the intercepts.

Standard form of a Quadratic Function

Recall that the standard form of a quadratic function is: $f(x)=$
, where a, b, and c are real numbers and $a \neq 0$
Also, remember that the parabola opens \qquad ("smiley") if $a>0$, while it opens \qquad ("frowny") if $a<0$.

Y-intercept

Remember that y-intercept is where the function crosses the \qquad -axis, i.e. when $x=0$. So, to find the y-intercept simply plug in __ for x and solve. It's good to keep in mind that a parabola will always have exactly one y-intercept. Ex. $f(x)=x^{2}-6 x+8$

X-intercept

In contrast, the x-intercepts are where the function crosses the \qquad -axis, i.e. when $y=0$. So, one must make y, or $f(x)$ in this case, zero and then solve for x. This can be done either by factoring, using the quadratic formula, or completing the square.
Ex. $\quad f(x)=x^{2}-6 x+8 \quad f(x)=2 x^{2}-12 x+11$

Graphing the quadratics

So, once you have the vertex and the x and y -intercepts, you can graph the parabola.
Ex. $f(x)=x^{2}-6 x+8$

Try a few more...
Graph the following functions

1. $f(x)=2 x^{2}+8 x+11$
2. $f(x)=-x^{2}+x+2$
3. $f(x)=3 x^{2}+6 x-1$
