Lesson 2-4: Transformation of Functions III

Objective

Students will...

- Be able to apply the properties of stretch and compression in graphing various functions.
- Be able to determine the scale factor of the stretch or compression.

Transformation of Functions

Let's go ahead and compare the two functions: $f(x)=x^{2}$ and $g(x)=2 x^{2}$

Let's go ahead and compare the two functions: $f(x)=x^{2}$ and $g(x)=\frac{1}{2} x^{2}$

Transformation: Stretch and Compression

As observed, the transformation that took place was a \qquad stretch or a compression by a certain scale factor. This can be generalized by the following: For $y=c f(x)$

If , \qquad the graph of $y=f(x)$ vertically by a factor of c .

If \qquad the graph of $y=f(x)$ vertically by a factor of c.

Transformation of Functions

Now let's go ahead and compare the two functions: $f(x)=x^{2}$ and $g(x)=(2 x)^{2}$

Now let's go ahead and compare the two functions: $f(x)=x^{2}$ and $g(x)=\left(\frac{1}{2} x\right)^{2}$

Transformation: Stretch and Compression
As observed, the transformation that took place was a \qquad stretch or a compression by a certain scale factor. This can be generalized by the following:
For $y=f(c x)$
If \qquad the graph of $y=f(x)$ horizontally by a factor of $\frac{1}{c}$

If
Note the \qquad relationship of the scale factor between vertical and horizontal stretch/compression.

Examples

Determine whether the function has a vertical or a horizontal stretch/compression, and determine its scale factor.
a. $f(x)=3 x^{2}$
b. $f(x)=\left(\frac{1}{2} x\right)^{3}$
c. $h(x)=\frac{3}{4}(x-1)^{19}$
d. $p(x)=\sqrt{3 x}$
e. $f(x)=\frac{5}{4}|x|$
f. $q(x)=\frac{8}{5} \sqrt[6]{x-1}$
g. $u(x)=\frac{10}{11}(x-990)^{5}$
h. $t(x)=3 \sqrt{\frac{7}{6}(x+5)}$

For the function given function f, write the equation for the final transformed graph, based on the description of the transformation done.
$f(x)=\sqrt[3]{x}$; shift 3 units to the left, stretch vertically by a factor of 5 , and reflect in the x-axis.

Explain how the graph of g is obtained from the graph of f.
$f(x)=|x|, g(x)=3|x|+1$

$$
f(x)=|x|, g(x)=-|x+1|
$$

