Lesson 2-4: Transformation of Functions II

Objective

Students will...

- Be able to apply the properties of reflections in graphing various functions.
- Be able to determine whether a function is even or odd.

"Parent" Functions

We have seen and studied some of the standard functions and their graphs. For example.

$f(x)=x^{3}$

Transformation of Functions

Let's go ahead and compare the two functions: $f(x)=x^{2}$ and $g(x)=-x^{2}$

Now let's compare the functions: $f(x)=\sqrt{x}$ and $g(x)=\sqrt{-x}$

Transformation: Reflection

As observed, the differences between the two functions were either \qquad reflection.
This can be generalized by the following:
Along the y -axis (horizontal)
$y=f(-x)$ reflects the graph of $y=f(x)$ along the \qquad axis (\qquad reflection).
Along the x -axis (vertical)

$$
y=-f(x) \text { reflects the graph of } y=f(x) \text { along the }
$$

\qquad axis (\qquad reflection).

Examples
Sketch the following functions by transforming its "parent" function.
a. $f(x)=-|x|$
b. $f(x)=(-x)^{3}$

Even Functions

Consider the function $f(x)=x^{2}$. We observed that it can be reflected vertically, i.e. along the x-axis. What happens when we try to reflect this function horizontally, i.e. along the y-axis?
This would mean that the equation would be written in the form of $f(x)=(-x)^{2}=x^{2}$
So, as you can see horizontal reflection really did not change anything. This can easily be seen on its graph.

Any function that has this characteristic is called an \qquad function.

Odd Functions

Now consider the function $f(x)=x^{3}$. We have already seen it reflected horizontally, i.e. along the y-axis. What happens when we reflect this graph vertically, i.e. along the x-axis? Look at the graph! Here the graph looks the same whether it is reflected vertically or horizontally.
This can easily be seen algebraically: $(-x)^{3}=-x^{3}$.
Any function that has this characteristic is called an \qquad function.

Even and Odd Functions

So now we give a formal, generalized definition of even and odd functions:
Let f be a function,

$$
\begin{array}{ll}
f \text { is even if } f(-x)= & , \text { for all } x \text { in the domain of } f \\
f \text { is odd if } f(-x)= & , \text { for all } x \text { in the domain of } f
\end{array}
$$

Ex. Determine whether the following functions are even or odd.
a. $f(x)=x^{5}+x$
b. $g(x)=1-x^{4}$
c. $h(x)=2 x-x^{2}$

