Period:

Warm Up 9/10

Lesson 2-4: Transformation of Functions I

Objective

Students will...

- Be able to understand the basic idea of transformation of functions.
- Explore and apply the properties of vertical and horizontal shifts.

"Parent" Functions

We have seen and studied some of the standard functions and their graphs. For example, $f(x) = x^2$ $f(x) = x^3$

Transformation of Functions

Now, consider our problem from the warm up. Let's go ahead and compare the two functions: $f(x) = x^2$ and $g(x) = x^2 + 2$

Transformation: Vertical Shift

As observed, the difference between f(x) and g(x) was that g(x) was simply f(x) vertically _____ **2 units**. This can be generalized by the following:

$$y =$$
 shifts the graph of $y = f(x)$ upward(+) or downward(-) c units, for $c > 0$.

Ex. Use the graph of $f(x) = x^2$ to sketch the graph of, $g(x) = x^2 + 3$ and

Examples Use the graph of $f(x) = x^3 - 9x$ shown below to sketch the graph of $g(x) = x^3 - 9x + 10$ and $h(x) = x^3 - 9x - 20$

PreCalculus	Name:	Period:

Transformation: Horizontal Shift

Similar to vertical shift, we also have a <u>horizontal shift</u>. Let's compare the three functions: $f(x) = x^2$, $g(x) = (x + 2)^2$, $h(x) = (x - 1)^2$

Transformation: Horizontal Shift

So the horizontal shift can also be generalized.

y =shifts the graph of y = f(x) to the right(+) or left(-) c units, for c > 0. Note the <u>opposite</u> signs! Ex. Use the graph of $f(x) = x^2$ to sketch the graph of,

Use the graph of
$$f(x) = \sqrt{x}$$
 shown below to sketch the graph of $g(x) = \sqrt{x-3}$ and $h(x) = \sqrt{x-3} + 4$

Example Describe the shift of the function: $g(x) = (x + 11)^2 - 2$ from its "parent" function, $f(x) = x^2$

Describe the shift of the function $h(x) = (x - 6)^5 + 1$ from its "parent" function, $f(x) = x^5$

Describe the shift of the function $p(x) = \sqrt{x+5} - 4$ from its "parent" function, $f(x) = \sqrt{x}$

Homework 9/10 TB pg. 190 #1-3, 7, 11, 13, 19 (a, b, d), 27, 28, 33, 37, 39

Date: