### Warm Up 9/19/13

- 1. Define function
- 2. Evaluate the function at the indicated values.

$$f(x) = x^2 + 2x$$
; f(0), f(3), f(a + b)

3. Explain in words how the given parabola has been transformed from its standard form.

$$f(x) = -[3(-x-4)^2 + 2]$$

# Warm Up Solutions

1. Define function

## Warm Up Solutions

2. Evaluate the function at the indicated values.

$$f(x) = x^2 + 2x$$
; f(0), f(3), f(a + b)

### Warm Up Solutions

3. Explain in words how the given parabola has been transformed from its standard form.

$$f(x) = -[3(-x-4)^2 + 2]$$



### Objective

#### Students will...

- Be able to understand the basic idea of transformation of functions.
- Explore and apply the properties of vertical and horizontal <u>shifts</u>, <u>reflections</u>, <u>compression</u>, and <u>stretch</u>, in graphing various functions.

### **Vertical Shifts**

 $y = f(x) \pm c$  shifts the graph of y = f(x) upward(+) or downward(-) c units, for c > 0.

Ex. 
$$y = x^2 \pm 4$$
 Ex.  $y = x - 2$ 

### **Horizontal Shifts**

 $y=f(x\pm c)$  shifts the graph of y=f(x) to the right(+) or left(-) c units, for c>0.

Ex. 
$$y = (x \pm 2)^2$$
 Ex.  $y = |x - 2|$ 

#### Reflection

Along the y-axis (horizontal)

y = f(-x) reflects the graph of y = f(x) along the y-axis (horizontal reflection).

Along the x-axis (vertical)

y = -f(x) reflects the graph of y = f(x) along the x-axis (vertical reflection).

Ex. 
$$y = (-x - 2)^2$$
 Ex.  $y = -|x - 2|$ 

## **Vertical Stretch and Compression**

For y = cf(x)

If c>1, stretch the graph of y=f(x) vertically by a factor of c.

If 0 < c < 1, shrink the graph of y = f(x) vertically by a factor of c.

Ex. 
$$y = 3x^2$$

$$Ex. y = \frac{1}{2}x^2$$

### **Horizontal Stretch and Compression**

For y = f(cx)

If c>1, shrink the graph of y=f(x) horizontally by a factor of  $\frac{1}{c}$ 

If 0 < c < 1, stretch the graph of y = f(x) horizontally by a factor of  $\frac{1}{c}$ 

Ex. 
$$y = (3x)^2$$

Ex. 
$$y = (\frac{1}{2}x)^2$$

Suppose the graph of the function f is given. Describe how the graph of each function has been transformed (changed from its original position).

1. 
$$y = f(x - 2) - 5$$

2. 
$$y = f(-x + 2)$$

$$3. y = \frac{1}{3} f(x)$$

$$4. y = f(\frac{5}{2}x)$$

Find a formula for the new graph.

1.

2.



Graph the following function.

$$1. f(x) = x^3 + 2$$

Graph the following function.

$$2. f(x) = 2\sqrt{x+1} - 1$$