Warm Up 9/9

Lesson 2-3: Increasing and Decreasing Functions: Average Rate of Change

Objective

Students will...

- Be able to determine whether a function is increasing or decreasing algebraically and using graphs.
- Be able to compute the average rate of change, and understand its relationship to the secant line.

Greatest Integer

The greatest integer simply means the greatest integer within a range of numbers. The key here is that the negative signs almost have no effect. You can also think of it as the greatest absolute value.
Ex. Find the greatest integer.
Between -6 and $-5: \quad$ Between -1 and 0: Between 0 and 1: Between 4 and 5:

Increasing and Decreasing Functions

are often used to model changing quantities. Thus, it's important to see and analyze where
a function is increasing or decreasing.
A function, say f is...
\qquad on an interval I if $f\left(x_{1}\right) \quad f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$ in I. on an interval I if $f\left(x_{1}\right) \quad f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$ in I.
In other words, when a bigger number is \qquad the output of an increasing function is \qquad , while the output of a \qquad function is smaller.

Examples
Determine whether the following functions are increasing or decreasing at the given interval.
a. $f(x)=x+2 ;[1,9]$
b. $g(x)=\frac{3}{1+x^{2}} ;[-3,0] ;[1,5]$

Graphs of Increasing and Decreasing Functions

Increasing and decreasing functions can also be easily seen graphically.

Thus, when viewing the graph from \qquad if the graph is rising the function is increasing, and vice-versa.

Examples
Determine the intervals on which the function W is increasing and on which it is decreasing, or neither.

Average Rate of Change

Sometimes it is important to find how much a graph has increased or decreased within a certain interval. One of the most useful ways to analyze such change is calculating the \qquad .

average rate of change:
 $=\frac{\text { change in } y}{\text { change in } x}=$

As you can see the average rate of change is really the \qquad of the line connecting the two endpoints of a given interval. This line connecting the two endpoints is known as the \qquad

Example
For the function $f(x)=(x-3)^{3}$, find the average rate of change between the following intervals:
a. $[1,3]$
b. $[4,7]$

For the function $f(x)=(x-3)^{3}$, find the average rate of change between the interval [2, 7].

If an object is dropped from a tall building, then the distance it has fallen after t seconds is given by the function $d(t)=16 t^{2}$. Find its average speed (average rate of change) over the following intervals:
a. $t=1 \mathrm{~s}$ and $t=5 \mathrm{~s}$
b. $t=a$ and $t=a+h$

Using the graph of the function of temperature $F(t)$ in given time t, find the average rate of temperature between the following times:
a. 8am to 9 am
b. 1 pm to 3 pm
c. 4 pm to 7 pm

