## Warm Up 9/5

## Lesson 2-2: Graphs of Functions

## Objective

Students will...

- Be able to make a table of values for a given function.
- Be able to graph each function using its table of values.
- Be able to determine the domain and the range of each function from its graph.


## Four Ways of Representing a Function

To help us understand what a function is, we have used machine and arrow diagrams. We can represent a functional relationship in following ways:

1. $\qquad$ (by a description in words)
2. $\qquad$ (by an explicit formula)
3. $\qquad$ (by a graph)
4. $\qquad$ (by a table of values)

## Functions and their Graphs



If $f$ is a function with domain A , then the graph of $f$ is the set of ordered pairs: $\{$
\}
In other words, the graph of $f$ is the set of all points $(x, y)$ such that $y=f(x)$; that is, the graph of $f$ is the graph of the equation $y=f(x)$.
Hence, we can place each input and output as an ordered pair, namely, ( $\qquad$
 $\qquad$ ).

## Table of Values

Thus, we can graph every function the way we first learned how to graph- by making a table of values. Consider the following functions:
$f(x)=x^{2}$
$g(x)=x^{3}$
$h(x)=\sqrt{x}$

## Graphing Functions

| $x$ | $f(x)=x^{2}$ |
| :---: | :---: |
| 0 | 0 |
| $\pm \frac{1}{2}$ | $\frac{1}{4}$ |
| $\pm 1$ | 1 |
| $\pm 2$ | 4 |
| $\pm 3$ | 9 |


| $x$ | $g(x)=x^{3}$ |
| :---: | :---: |
| 0 | 0 |
| $\frac{1}{2}$ | $\frac{1}{8}$ |
| 1 | 1 |
| 2 | 8 |
| $-\frac{1}{2}$ | $-\frac{1}{8}$ |
| -1 | -1 |
| -2 | -8 |


| $x$ | $h(x)=\sqrt{x}$ |
| :---: | :---: |
| 0 | 0 |
| 1 | 1 |
| 2 | $\sqrt{2}$ |
| 3 | $\sqrt{3}$ |
| 4 | 2 |
| 5 | $\sqrt{5}$ |

## Getting Information from the Graph

The values of a function are represented by the $y$-coordinates of its graph. So, we can read off the values of a function from its graph.
Ex. The function $T$ graphed gives the temperature between noon and 6 P.M. at a certain weather station.
a. Find $T(1), T(3), T(5)$.
b. Which is larger, $T(2)$ or $T(4)$ ?


## Domain and Range from Graphs

You can also determine the $\qquad$ and the $\qquad$ of functions from their graphs.
Remember that domain is all possible $x$-values, while the range is the all possible $y$-values. So, from the graph the domain is always from the lowest $\qquad$ to the highest $\qquad$ _.
Likewise, the range is from the lowest $\boldsymbol{y}$-coordinates to the highest $\boldsymbol{y}$-coordinates.
Ex.


## Vertical Line Test

Remember that in a function, for every input there is exactly one output. Graphically this means that for every $x$ value there must be only one $y$-value. Thus, a $\qquad$ test can be used on a graph of any given expression to determine whether it is a function.
Vertical Line Test- A curve in the coordinate plane is the graph of a function if and only if no vertical line intersects the curve more than
Ex.


