PreCalculus	Name:	Period:	Date:
Warm Up 9/3			

Lesson 2-1b: Functions and their Domain

Objective

Students will...

- Be able to solve word problems using functional relationship.
- Be able to find the domains of functions.
- Be able to represent functions in multiple ways.

Definition	of a	Eun	ction	
Definition	ота	Fun	CTIO	

Definition of a Function	
So now we are ready to def	ine what a function is.
A, say f , i	is a rule that assigns to each element (item) x in a certain set A
element, called $f(x)$, in a s Ex.	et B .

Another way to define function is for every **input**, there is exactly **one output**. The set A is also known as the _____, and set B is known as the _____.

Word Problems Using Functions

If an astronaut weighs 130 pounds on the surface of the earth, then her weight when she is h miles above the earth is given by the function: $w(h) = 130 \left(\frac{3960}{3960+h}\right)^2$

- a. What is her weight when she is 100 mi above the earth?
- b. Construct a table of values of the function w that gives her weight at heights from 0 to 500 mi. What do you conclude from the table?

If the speed limit on a 100-mile stretch of road is 75 miles per hour, then the amount of time it takes a car going xmiles per hour over the limit to travel the stretch is given by $f(x) = \frac{100}{75+x}$

- a. How long does it take the car to travel the stretch if the car is going 10 miles per hour over the limit?
- b. How long does it take the car to travel the stretch if the car is not speeding at all?

Domain of a Function

Recall that the <u>domain</u> of a function is the set of all **inputs**. Domain may be written <u>explicitly</u>. For example, for the $0 \le x \le 5$, the domain is specifically set as all inputs between and including 0 and 5. function $f(x) = x^2$, Hence its domain is simply [0, 5].

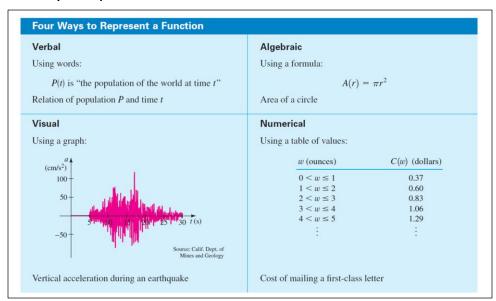
Whenever we have a function without the domain stated explicitly, we need to figure it out by algebraic reasoning. $g(x) = \frac{1}{x-4}$ Ex. $f(x) = x^2 + 1$ $h(x) = \sqrt{x}$

Examples of Functions

Find the domain of each function.

a.
$$f(x) = \frac{1}{x^2 - x}$$

b.
$$g(x) = \sqrt{9 - x^2}$$


$$c. h(t) = \frac{t}{\sqrt{t+1}}$$

Four Ways of Representing a Function

To help us understand what a function is, we have used machine and arrow diagrams. We can represent a functional relationship in following ways:

- 1. _____ (by a description in words)
- 2. _____ (by an explicit formula)
- 3. _____ (by a graph)
- 4. _____ (by a table of values)

Four Ways to Represent a Function

