9/3

Lesson 2-1: Functions

Objective

Students will...

- Be able to define what an input and an output is.
- Be able to define what a function is.

Functional Relationship

A \qquad is a relationship in which one quantity depends on another. In other words,
given two variables, one is always \qquad on the other.
ex.

Independent vs Dependent Variables

That being said, we must always be able to define both the \qquad and \qquad variables.
ex. Height is a function of age.
Temperature is a function of date.
Cost of mail is a function of weight.

Input vs Output
Mathematically speaking, we can also differentiate the independent and the dependent variables as
\qquad and \qquad . Consider the following picture:

Here the function " f " is the rule that the machine operates in, and what comes out \qquad on what goes in.

Definition of a Function

So now we are ready to define what a function is.
A \qquad say f, is a rule that assigns to each element (item) x in a certain set A \qquad
element, called $f(x)$, in a set B.
Ex.

The set A is also known as the \qquad and set B is known as the \qquad .

Examples of Functions

Another way to define function is for every input, there is exactly \qquad output.
Ex.

$$
f(x)=x-3
$$

$$
f(x)=x^{2}
$$

Evaluating Functions

Consider the function $f(x)=x-3$
Here, x is the input, while $f(x)$ is the output. That being said, $f(x)$ would change as x changes. We can evaluate functions by placing different inputs. For the above function,

$$
f(1)=(1)-3=-2 \quad f(2)=(2)-3=-1 \quad f(0)=(0)-3=-3 \quad f(-3)=(-3)-3=-6
$$

Examples
Let $f(x)=3 x^{2}+x-5$. Evaluate each function value.

1. $f(-2)$
2. $f(0)$
3. $f(4)$
4. $f\left(\frac{1}{2}\right)$

Piecewise Functions

functions are combination of functions that are defined by the \qquad -.
Ex.

$$
C(x)= \begin{cases}39 & \text { if } 0 \leq x \leq 400 \\ 39+0.2(x-400) & \text { if } x>400\end{cases}
$$

So whenever x is in between or equal to 0 and 400, then the output is always 39 . Whenever x is strictly above 400, the bottom function applies.

Examples

Evaluate

> 22. $f(x)= \begin{cases}5 & \text { if } x \leq 2 \\ 2 x-3 & \text { if } x>2\end{cases}$
> $f(-3), f(0), f(2), f(3), f(5)$

Use the function to evaluate the indicated expression.
$f(x)=3 x-1 ; f(2 x), 2 f(x)$

Find $f(a), f(a+h)$, and the difference quotient $\frac{f(a+h)-f(a)}{h}$ $f(x)=x^{2}+1$

