Period:

9/3

Lesson 2-1: Functions

Objective

Students will...

- Be able to define what an input and an output is.
- Be able to define what a function is.

Functional Relationship

A ______ is a relationship in which one quantity **depends** on another. In other words, given two variables, one is always ______ on the other. ex.

Independent vs Dependent Variables

That being said, we must always be able to define both the ______ and _____ and ______ variables.

ex. Height is a function of age. Temperature is a function of date. Cost of mail is a function of weight.

Input vs Output

Mathematically speaking, we can also differentiate the independent and the dependent variables as ______ and ______. Consider the following picture:

Here the function "f" is the rule that the machine operates in, and what comes out ______ on what goes in.

Definition of a Function

Ex.

So now we are ready to define what a function is. A ______, say f, is a rule that assigns to each element (item) x in a certain set A ______ element, called f(x), in a set B.

The set A is also known as the ______, and set B is known as the ______.

Examples of Functions

Another way to define function is for every **input**, there is exactly _____ **output**. Ex. f(x) = x - 3 $f(x) = x^2$

Evaluating Functions

Consider the function f(x) = x - 3Here, x is the input, while f(x) is the output. That being said, f(x) would change as x changes. We can evaluate functions by placing different inputs. For the above function, f(1) = (1) - 3 = -2 f(2) = (2) - 3 = -1 f(0) = (0) - 3 = -3 f(-3) = (-3) - 3 = -6

Period:

.

E	Examples
Let $f(x) = 3x^2 + x - 5$. Evaluate each function value	2.
1. <i>f</i> (-2)	2 . <i>f</i> (0)
3. <i>f</i> (4)	4. $f(\frac{1}{2})$

Piecewise Functions

functions are combination of functions that are defined by the ______

Ex. $C(x) = \begin{cases} 39 & \text{if } 0 \le x \le 400\\ 39 + 0.2(x - 400) & \text{if } x > 400 \end{cases}$

So whenever x is in between or equal to 0 and 400, then the output is always 39. Whenever x is strictly above 400, the bottom function applies.

Evaluate

Examples

22.
$$f(x) = \begin{cases} 5 & \text{if } x \le 2\\ 2x - 3 & \text{if } x > 2 \end{cases}$$
$$f(-3), f(0), f(2), f(3), f(5)$$

Use the function to evaluate the indicated expression. f(x) = 3x - 1; f(2x), 2f(x)

Find f(a), f(a + h), and the difference quotient $\frac{f(a+h)-f(a)}{h}$ $f(x) = x^2 + 1$

> Homework 9/3 TB pg. 155 #1-4, 12, 16, 24, 28, 34