

Objective

Students will...

- Be able to give a geometric definition of an ellipse.
- Be able to know the standard equation of ellipses.

Ellipse within a Cone

As seen from yesterday's video, a parabola can be cut out from a cone. Parabolas are easily found in the real-world.

Ellipse

Ellipse

Here, we want to geometrically define what an ellipse is.

<u>Geometric Definition of an Ellipse</u>- An ellipse is the set of all points in the plane the sum whose distances from two fixed points F_1 and F_2 is a constant. These two fixed points are **foci** (plural of focus) of the ellipse.

Equations and Graphs of Ellipses

Using the distance formula, we can see that parabolas have the following equations: $\overline{for \ a > b > 0}$,

Horizontal

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Vertices: $(\pm a, 0)$ $(\alpha, 0)$, $(-\alpha, 0)$

Major Axis: Horizontal length 2a

Minor Axis: Vertical length 2b

-b

Vertical

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

 $(0,\pm a)$

Vertical length 2a

Horizontal length 2b

$$(0,\pm c), c^2 = a^2 - b^2$$

Example

An ellipse has the equation $\frac{x^2}{9} + \frac{y^2}{4} = 1$

Find the foci, vertices, and the lengths of the major and minor axes, and

forci: (±c,0)=> c2=a2-b2=> c2= a-4=> c=±55

=(±55,0) or (55,0), (-55,0)

Vertices: $(\pm \alpha, 0) = (\pm 3, 0)$ maj: horiz length 2a=2(3)=6

Min.: Vertical length 2b=2(2)=4

Example

/ 4 ori z

An ellipse has the equation $\frac{x^2}{36} + \frac{y^2}{25} = 1$

Find the foci, vertices, and the lengths of the major and minor axes, and

sketch the graph.

Foci:
$$(\pm 11,0)$$

Verlines: $(\pm 6,0)$

1

Example

Find the foci of the ellipse
$$\frac{16x^2}{144} + 9y^2 = \frac{144}{144}$$
, and sketch its graph. Vertical,

$$\frac{16x^2}{144} + \frac{94^2}{144} = 1$$

$$\frac{16x^{2}}{144} + \frac{94^{2}}{144} = 1 = 2 \frac{x^{2}}{9} + \frac{4y^{2}}{16} = 1$$

harle. Example

The vertices of an ellipse are $(\pm 4,0)$ and foci are $(\pm 2,0)$. Find its equation and sketch the graph.

Vertices: (±a,0)

 $(2=a^2-b^2)$ 4=1b-(12)

 $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ $= \frac{1}{16} + \frac{y^{2}}{12} = 1$

Homework 5/19

TB pg. 759 #1-8