Name: \qquad Period:

Date: \qquad

PreCalculus Chapter 2 Practice Test

Answer the following questions. No work is necessary unless it is specified.

1. Define function.
2. Let $f(x)=2 x^{2}+8 x-1$. Evaluate each function value.
a. $f(1)$
b. $f(3)$
c. $f(10)$
d. $f(a)$
e. $f\left(x^{2}\right)$
3. For the same function $f(x)$ from \#2,
a. Find its domain.
b. Complete the square and write it in the vertex form: $f(x)=a(x-h)+k$
c. Find its vertex and determine whether it's a maximum or a minimum point.
d. Describe the graph's change (shift, stretch, compress, etc.) from $f(x)=x^{2}$
4. Let $f(x)=x^{2}-4 x-5$
a. Find its domain.
b. Find the vertex and determine whether it is a maximum or a minimum point.
c. Find the x and the y intercepts.
d. Use the vertex and the intercepts to sketch the graph the function.
5. Write the following equation for y in terms of $\mathrm{x}: 3 x+4 y=2$
6. Write the following equation for x in terms of $\mathrm{y}: x-2 y-3=0$
7. Use the graph to state the intervals in which the function is increasing, decreasing, and neither.

8. For the function $f(x)=3 x-2$, determine the average rate of change between $x=2$, and $x=3$.
9. Determine whether the following functions are one-to-one. If they are, find their inverse function.
a. $f(x)=-2 x+4$
b. $f(x)=\sqrt{x}$
c. $g(x)=x^{2}-2 x$
d. $h(x)=x^{3}+8$
10. Let $f(x)=x-3$ and $g(x)=4 x^{2}$. Find $f+g, f-g, f g, \frac{f}{g}, f \circ g, g \circ f$
11. Use $f(x)=3 x-5$ and $g(x)=2-x^{2}$ to evaluate the following expressions.
a. $(f \circ g)(0)$
b. $(f \circ g)(2)$
c. $(f \circ f)(3)$
d. $(g \circ f)(1)$
12. (T or F) Only one-to-one functions can have an inverse function.
13. (T or F) If a graph stretches vertically, then it also stretches horizontally.
14. (T or F) The set of all inputs (domain) of a function becomes the set of all outputs (range) for the inverse function.
15. (T or F) You can test for one-to-one-ness of a function using the vertical line test.
16. The effectiveness of a television commercial depends on how many times a viewer watches it. After some experiments an advertising agency found that if the effectiveness E is measured on a scale of 0 to 10 , then $E(n)=\frac{2}{3} n-\frac{1}{90} n^{2}$, where n is the number of times a viewer watches a given commercial. For a commercial to have maximum effectiveness, how many times should a viewer watch it?
17. A gardener has 240 feet of fencing to fence in a rectangular vegetable garden. Find the dimensions of the largest area she can fence. What is the maximum area?
18. A hockey team plays in an arena with a seating capacity of 10,500 spectators. With the ticket price set at $\$ 10$, average attendance at recent games has been 9000 . A market survey indicates that for each dollar the ticket price is lowered, the average attendance increases by 1000 .
a. What ticket price is so high that no one attends, and hence no revenue is generated?
b. Find the price that maximizes revenue from ticket sales.
19. A rectangular building lot is three times as long as it is wide. Find a function that models its area A in terms of its width w.
20. Find a function that models the radius r of a circle in terms of its area A.
21. Find a function that models the area A of a circle in terms of its circumference C.
22. Two ships leave port at the same time. One sails south at $15 \mathrm{mi} / \mathrm{h}$ and the other sails east at $20 \mathrm{mi} / \mathrm{h}$. Find a function that models the distance D between the ships in terms of the time t (in hours) elapsed since their departure.
