PreCalculus Practice Midterm

Answer the following questions.

1. Define function.
2. Describe the end behavior of any positive odd polynomial function graphs.
3. Describe the end behavior of any negative odd polynomial function graphs.
4. Let $f(x)=2 x^{2}+8 x-1$
a. $f(1)$
b. $f(3)$
c. $f(0)$
d. $f(a b)$
5. For the same function $f(x)=2 x^{2}+8 x-1$ from \#2,
a. Find its domain.
b. Complete the square and write it in the vertex form: $f(x)=a(x-h)+k$
c. Find the vertex and determine whether it's a maximum or a minimum point.
d. Describe the graph's transformation (shift, stretch, compression, etc.) from $f(x)=x^{2}$
6. Use the graph to state the intervals in which the function is increasing, decreasing, and neither.

7. Write the following equation for y in terms of $x: 3 x+4 y=2$
8. Write the following equation for x in terms of $y: x-2 y-3=0$
9. For the function $f(x)=3 x-2$, determine the average rate of change between $x=2$, and $x=3$
10. Determine whether the following functions are one-to-one. If they are, find their inverse function.
a. $f(x)=-2 x+4$
b. $f(x)=x^{2}-2 x$
c. $g(x)=\sqrt{x}$
11. Let $f(x)=x-3$ and $g(x)=4 x^{2}$. Find $f+g, f-g, f g, \frac{f}{g}, f \circ g, \quad g \circ f$
12. The effectiveness of a television commercial depends on how many times a viewer watches it. After some experiments an advertising agency found that if the effectiveness E is measured on a scale 0 to 10, then $E(n)=\frac{2}{3} n-\frac{1}{90} n^{2}$, where n is the number of times a viewer watches a given commercial. For a commercial to have maximum effectiveness, how many times should a viewer watch it?
13. For the function: $T(x)=-x^{3}-3 x^{2}+13 x+15$
a. Describe the end behavior.
b. List the all of the possible rational zeros it can have.
c. Find all of the real zeros and the state their multiplicity. (Hint: Use synthetic division)
d. Use the information to sketch the graph of the function.
14. Divide $P(x)$ by divisor $D(x)$ using long division.

$$
P(x)=9 x^{2}-x+5 \quad D(x)=3 x^{2}-7 x
$$

15. For the function: $Z(x)=x^{3}-6 x+4$
a. List the all of the possible rational zeros it can have.
b. Find all of the real zeros. (Hint: Use synthetic division. You will be using the quadratic formula)
16. Evaluate the following expressions. Write the result in the form $a+b i$
a. $2 i\left(\frac{1}{2}-i\right)$
b. $(5-3 i)(1+i)$
c. $(x-(1+i))(x-(1-i))$
d. $\frac{1}{1+i}$
e. $\frac{2-3 i}{1-2 i}$
f. $\frac{-3+5 i}{15 i}$
g. i^{2024}
h. i^{89}
17. For the following function: $h(x)=x^{3}+x^{2}+81 x+81$
a. Exactly how many zeros does it have (real and complex)?
b. If 1 is the only real zero, how many complex zeros does the function have?
18. Find a polynomial with integer coefficients that satisfies the given conditions.
a. $P(x)$ with degree 2 , and zeros i and $-i$
c. $T(x)$ with degree 3 , and zeros -3 and $1+i$
d. $S(x)$ with degree $1-2 i$ and 1 , with 1 a zero of multiplicity 2.
19. For the rational function $R(x)=\frac{x^{2}+5 x+4}{x-3}$
a. Find the x and the y intercepts.
b. Find the asymptotes. If no horizontal asymptote exists, then divide to see if slant asymptote exists.
c. Describe and sketch the behavior of the graph near the vertical asymptotes.
20. Evaluate the following, when $f(x)=2^{x}$
a. $f(2)$
b. $f(1 / 2)$
c. $f(-2)$
d. $f(2 / 3)$
21. For $f(x)$ from \#20, graph the function by making a table of values ($x-y$ table).
(Hint: When choosing the x values, set 0 as the center value)
22. Now, graph $g(x)=\left(\frac{1}{2}\right)^{x}$, without having to make a table, but simply by transforming the graph of $f(x)=2^{x}$ from \#21.
23. A certain exponential graph of the equation of the form, $f(x)=a^{x}$, passes through the point $(2,25)$. Find the equation of the function (i.e. find a)
24. Using a calculator, evaluate the following:
a. e^{2}
b. $e^{-2.4}$
c. $3 e^{-5}$
25. Change the following to either logarithmic or exponential form.
a. $\log 100000=5$
b. $\ln 1=0$
c. $16^{-\frac{1}{4}}=\frac{1}{2}$
d. $\log _{2} \frac{1}{32}=-5$
26. Use the Laws of Logarithms to either expand or combine the following expressions.
a. $\log _{2}(6 x)$
b. $\ln \left(\frac{a b}{\sqrt[3]{c}}\right)$
c. $3 \log x+\frac{1}{2} \log (x+1)$
d. $3 \ln s+\frac{1}{2} \ln t-4 \ln \left(t^{2}+1\right)$
e. $\log \left(x^{2} y^{5}\right)$
f. $\log (x)-3 \log (y)+\log (x+y)$
27. Use the properties and/or Laws of logarithms to evaluate the following: (No calculator)
a. $\log 4+\log 25$
b. $\log _{2} 160-\log _{2} 5$
c. $\log \left(\log 10^{10000}\right)$
d. $\log _{3} 100-\log _{3} 18-\log _{3} 50$
e. $\log _{2} 6-\log _{2} 15+\log _{2} 20$
f. $\ln \left(\ln e^{e^{200}}\right)$
28. Solve the following exponential equations.
a. $3^{x+2}=7$
b. $8 e^{2 x}=24$
c. $e^{5-2 x}$
d. $10^{x^{2}-5 x+7}=1000$
29. Solve the following logarithmic equations.
a. $\log _{2}(x-3)=3$
b. $\ln x=3$
c. $5+4 \log (6 x)=25$
d. $2 \ln (x-2)=6$
e. $\log (x+8)+\log (x-1)=1$
f. $\log _{3}\left(3 x^{2}-8 x+11\right)=3$
30. If $\$ 10,000$ is invested at an interest rate of 10% per year, find the amount of the investment at the end of 5 years for the following compounding methods.
a. Annually.
b. Quarterly
c. Continuously
31. A culture contains 1500 bacteria initially and grows at a rate of 99% every minute.
a. Find a function that models the number of bacteria $n(t)$ after t minutes.
b. Find the number of bacteria after 16 minutes.
c. After how many minutes will the culture contain 15000 bacteria?
32. The half-life of a Cesium-137 is 30 years. Suppose that we have a $10-\mathrm{g}$ sample.
a. Find a function that models the mass remaining after t years.
b. How much of the sample will remain after 80 years?
c. After how long will only $2-\mathrm{g}$ of the sample remain?
33. (T or F) Only one-to-one functions can have an inverse function.
34. (T or F) If a graph stretches vertically, then it also stretches horizontally.
35. (T or F) Inverse of the exponential is logarithms
36. (T or F) Sine and Cosine curves are periodic.
37. Evaluate the following trigonometric functions. (No calculators!)
a. $\sin \frac{5 \pi}{3}$
b. $\sin \frac{7 \pi}{4}$
C. $\cos \frac{5 \pi}{6}$
d. $\tan \frac{3 \pi}{4}$
e. $\sec \frac{\pi}{3}$
38. If $\sin t=\frac{4}{5}$ and t is in quadrant II, find the values of all other trigonometric functions at t.
39. A gardener has 240 feet of fencing in a rectangular vegetable garden. Find the dimensions of the largest area she can fence. What is the maximum area?
40. A hockey team plays in an arena with a seating capacity of 10,500 spectators. With the ticket price set at $\$ 10$, average attendance at recent games has been 9000 . A market survey indicates that for each dollar the ticket price is lowered, the average attendance increases by 1000.
a. What ticket price is so high that no one attends, and hence no revenue is generated?
b. Find the price that maximizes revenue from ticket sales.
