Warm Up 9/26

 Find the average rate of change of the function between the given values of the variable

a.
$$f(x) = x^2 - 4$$
; $x_1 = 2$, $x_2 = 3$
AR(= S)

b.
$$g(x) = x^3 - 4x^2$$
; $x_1 = 0, x = 10$
 $\frac{600}{10} = 600$

Objective

Students will...

- Be able to add, subtract, multiply, and divide functions.
- Be able to compute the composition of functions.

Adding, Subtracting, Multiplying, and Dividing

There exist sums, differences, products, and quotients within functions. Here are the rules:

Let f and g be functions. Then the functions f + g, f - g, fg, f/g are defined as follows.

ned as follows.

$$(f+g)(x) = f(x) + g(x) = g(x) + f(x) = g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(fg)(x) = f(x)g(x)$$

$$(\frac{f}{g})(x) = \frac{f(x)}{g(x)} \quad \text{where} \quad g(x) \neq 0$$

Example
$$f(u) = \frac{1}{x-2} \text{ and } g(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } g(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } g(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ a. Find the functions } f(x) = \sqrt{x}, \quad f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ a. Find the functions } f(x) = \sqrt{x}, \quad f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ a. Find the functions } f(x) = \sqrt{x}, \quad f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } g(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } g(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{1}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{x}{x-2} \text{ and } f(x) = \sqrt{x}$$

$$f(x) = \frac{x}{x-2}$$

Let
$$f(x) = \frac{1}{x-2}$$
 and $g(x) = \sqrt{x}$
 $f(4) = \frac{1}{x-2}$ b. Find $(f+g)(4)$, $(f-g)(4)$, $(fg)(4)$, and $(\frac{f}{g})(4)$ $= \frac{1}{x} + 2 = \frac{2}{x}$
 $(f+g)(4) = f(4) + g(4) = \frac{1}{x-2} + 0$ $= \frac{1}{x} + 2 = \frac{2}{x}$
 $(f-g)(4) = f(4) - g(4) = \frac{1}{x-2} = -1$, $f = \frac{-3}{x}$.
 $(f-g)(4) = \frac{1}{x-2}$ $= \frac{1}{4}$
 $(f-g)(4) = \frac{1}{x-2}$ $= \frac{1}{4}$

Composition of Functions f(4) = J f

With functions, there s a very special way of combining them to get a new function. Consider the following,

Let
$$f(x) = \sqrt{x}$$
 and $g(x) = x^2 + 1$
We may define a function h as,

$$f \circ g = h(x) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1}$$

$$g \circ f = f(f(X)) = f(X) = f(X) = f(X) = f(X)$$
This is called a composition of functions. The composite function

This is called a composition of functions. The <u>composite</u> function $f\circ g$ (also called a <u>composition</u> of f and g) is defined by $f\circ g$

$$(f \circ g)(x) = f(g(x))$$

$$(f \circ g)(x) = f(f(x))$$

$$(f \circ x)(5) = f(g(5)) = f(7) = [4]$$

$$(g \circ f)(7) = g(f(7)) = g(4q) = 49 - 3 = [46]$$
Let $f(x) = x^2$ and $g(x) = x - 3$
a. Find the functions $f \circ g$ and $g \circ f$

$$(f \circ g)(x) = f(g(x)) = f(x - 3) = (x - 3)^2 = x^{2-6x+q}$$

$$(g \circ f)(x) = g(f(x)) - g(x^2) = (x^2) - 3 = x^{2-3}$$

$$(f \circ y)(5) = (5 - 3)^2 = 2^2 = 46$$

Let
$$f(x) = x^2$$
 and $g(x) = x - 3$

$$(f \circ f)(x) = f(f(x)) = f(x^2) = (x^2)^2 = [x^4]$$

$$(g \circ g)(x) = g(g(x)) = g(x-3) = (x-3) - 3$$

$$= [x-6]$$

$$f \circ f \circ f = x^6$$

$$f \circ f \circ f \circ f = x^6$$

$$f \circ f \circ f \circ f = x^6$$

$$f \circ f \circ f \circ f = x^6$$

$$f \circ f \circ f \circ f = x^6$$

$$f \circ f \circ f \circ f = x^6$$

$$f \circ f \circ f \circ f = x^6$$

$$f \circ f \circ f \circ f = x^6$$

$$f \circ f \circ f \circ f = x^6$$

Worksheet problems Odd only