Warm Up 9/26

 Find the average rate of change of the function between the given values of the variable

a.
$$f(x) = x^2 - 4$$
; $x = 2$, $x = 3$

$$f(3) = 0$$
 $\frac{5-0}{3-2} = 6$

b.
$$g(x) = x^3 - 4x^2$$
; $x = 0$, $x = 10$

$$f(0) = 0$$

 $f(10) - 600$

$$\frac{600-0}{10-0}$$
 = (60)

Objective

Students will...

- Be able to add, subtract, multiply, and divide functions.
- Be able to compute the composition of functions.

Adding, Subtracting, Multiplying, and Dividing

There exist sums, differences, products, and quotients within functions. Here are the rules:

Let f and g be functions. Then the functions f+g, f-g, fg, f/g are defined as follows.

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(fg)(x) = f(x)g(x)$$

$$(\frac{f}{g})(x) = \frac{f(x)}{g(x)} \quad \text{where} \quad \text{wher$$

Example

Let
$$f(x) = \frac{1}{x-2}$$
 and $g(x) = \sqrt{x}$

(f+g) (X) = f(X) + g(X) = $\frac{1}{x-2}$ + $\frac{5x}{x-2}$ (X) = $\frac{1}{x-2}$ + $\frac{5x}{x-2}$ + $\frac{5x}{x-2$

Let
$$f(x) = \frac{1}{x-2}$$
 and $g(x) = \sqrt{x}$
b. Find $(f+g)(4)$, $(f-g)(4)$, $(fg)(4)$, and $(\frac{f}{2})(4)$
 $f+g+1$ $f+g$

Composition of Functions "One inside the other"!

With functions, there s a very special way of combining them to get a new function. Consider the following,

Let
$$f(x) = \sqrt{x}$$
 and $g(x) = x^2 + 1$

We may define a function h as,

$$h(x) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1}$$

This is called a composition of functions. The <u>composite</u> function $f \circ g$ (also called a <u>composition</u> of f and g) is defined by

$$(f \circ g)(x) = f(g(x))$$

$$(g \circ f)(\chi) = g(f(\chi))$$

Example

$$-\left(7\right) = \sqrt{g}$$
Let $f(x) = x^2$ and $g(x) = (x - 3)$

a. Find the functions $f \circ g$ and $g \circ f$

$$(4.01)(2)-(2.15)=3(x_5)$$

$$= f(3(2)) = f(3/2) = (3/2) =$$

$$(y,f)(7)=0$$

 $(y,f)(7)=0$
 $(y,f)(7)=0$
 $(y,f)(7)=0$

Let
$$f(x) = x^2$$
 and $g(x) = x - 3$
Find the functions $f \circ f$ and $g \circ g$
 $(+ \circ +)(\times) = +((\times)) = +$

Homework 9/26

Worksheet problems Odd only