Warm Up 10/14

For the following functions, find the zeros and describe their end behavior.

behavior.

1.
$$P(x) = x^2 - 4$$
 $(x + 2)(x - 2) = 0$
 $x = \pm 2$
 $x = -2$
 x

Lesson 3-1 $\Delta < 0$ Polynomial Functions and their Graphs III

Objective

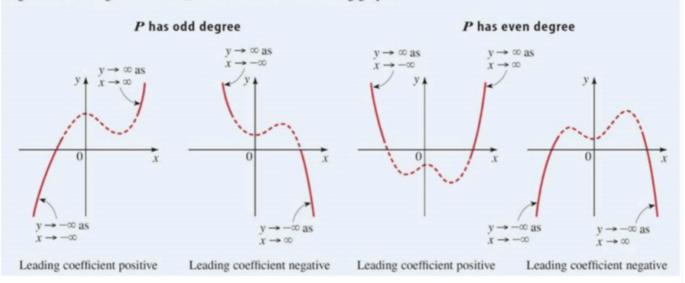
Students will...

 Be able to find and apply the multiplicity of each zero to graph polynomial functions.

End Behavior

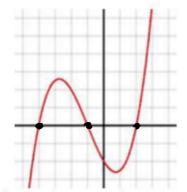
END BEHAVIOR OF POLYNOMIALS

The end behavior of the polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ is determined by the degree n and the sign of the leading coefficient a_n , as indicated in the following graphs.

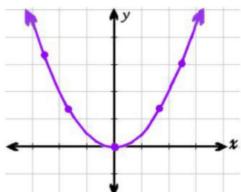


Shape of the Graph Near a Zero

As we can observe from various graphs, we see that some <u>cross</u> the x-axis, while some do not. For example,



This cubic graph crosses the x-axis 3 times.

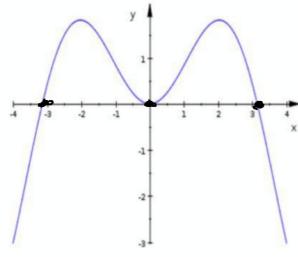


This parabola never crosses the x-axis.

Note: Touching and crossing are different things!

Shape of the Graph Near a Zero

In fact, some graphs contain a mixture of crossing and no crossing behavior. Consider,



Here, we can see that while the graph crosses the x-axis at the two ends, it does not cross the x-axis in the middle. (Note: the graph is still x touching the x-axis in all places, so they are still considered as zeros of the graph).

Crossing Behavior

We can also observe a nice pattern regarding the x-axis crossing behaviors of polynomial graphs. The pattern has to do with the multiplicity of every zero, i.e. the exponent attached to them.

Example:
$$P(x) = x^{4}(x-2)^{3}(x+1)^{2} \times xxx(x-1)(x-1)(x-1)(x-1)$$

For the above polynomial function P(x), its zeros are 0, 2, and -1. The multiplicity of these zeros are the exponents that are attached to each of them. So, the x-intercept 0 has the multiplicity of 4, while 2 has the multiplicity of 3, and -1 has the multiplicity of 2.

Multiplicity and the Crossing Behavior

With that said, the pattern regarding the x-axis crossing behavior is as follows

For every <u>odd multiplicity</u>, the graph at that particular x-intercept, will **cross** the x-axis.

For every <u>even multiplicity</u>, the graph at that particular x-intercept, will **not cross** the x-axis.

So from our previous example, since the x-intercepts 0 and -1 had an even multiplicity, the graph will not cross the x-axis at those points. In contrast, at the intercept 2, the graph will cross the x-axis because it had an odd multiplicity.

Graphing Polynomials

How is this useful? Well, understanding where the graph does and doesn't cross the x-axis will seriously aid in graphing the polynomials.

P/4 =

Example: Graph the polynomial, $P(x) = x^4(x-2)^3(x+1)^2$

mult: E 0 E

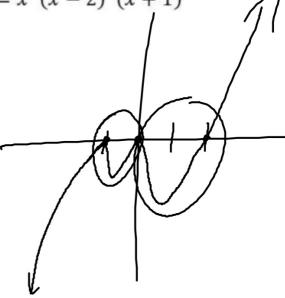
Zeros: 0 , 2 , - 1

Y-intercept: (0,0)
Degree: q (odd)

+ or - ?: +

End Behavior:

1->00,4>00 1->-00,4->-0



Example

Graph the polynomial: $R(x) = (x-1)^{2}(x-2)(x-5)^{3}$

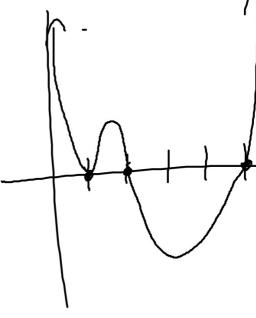
(0 or £), Mult: £ 0 0 Zeros: 1, Z, S Y-intercept: (0,250)

Degree: 6 (even).

+ or - ?: +

End Behavior:

X-200, 4200 X-2-00, 4200



Example

Graph the polynomial: $T(x) = -x^4 + 3x^3 - 2x^2$ $T(x) = -x^4 + 3x^3 - 2x^2 - x^2(x - 1)(x - 1)$ $T(x) = -x^4 + 3x^3 - 2x^2 - x^2(x - 1)(x - 1)$

mult: 6 0 0 Zeros: 0, 2, 1

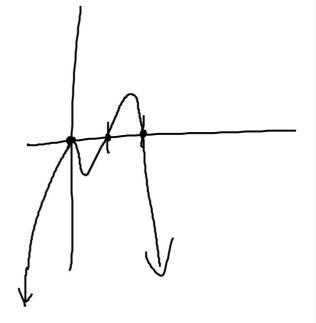
Y-intercept: (D, D)

Degree: 4 Leven)

+ or - ?: -

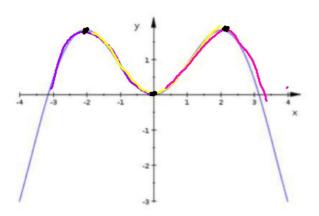
End Behavior:

X->-0 14->-00



Local Extrema (Maxima and Minima)

The last thing to observe in this section is the <u>local extrema</u>. Extrema refers to both maxima and minima of a graph. For Example,



We can see that this graph contains three local extrema.

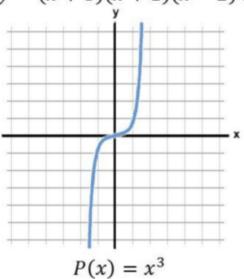
Local Extrema Principle

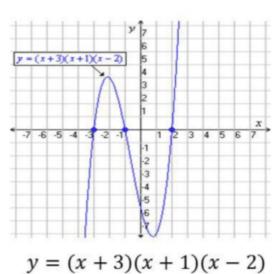
The <u>Local Extrema Principle</u> states that for every polynomial of degree, n, the graph has at most n-1 local extrema.

So for example, $T(x) = -x^4 + 3x^3 - 2x^2$, can have no more than 4 - 1 = 3 local extrema. We can see this on our graph.

Also, $P(x) = x^4(x-2)^3(x+1)^2$, can have no more than 9-1=8 local extrema. We can also see this on our graph.

The key word here is of course, "at most." Hence, a polynomial can have less than n-1 local extrema. In fact, standard function $P(x)=x^3$ does not have any local extrema, while y=(x+3)(x+1)(x-2) has exactly 2 (which is okay since 3-1=2).





Homework 10/14

TB pg. 262 #11-35 (e.o.o)

Use the zeros, end behaviors, and the multiplicity to sketch the graph.

