Crossing Behavior

We can also observe a nice pattern regarding the x-axis crossing behaviors of polynomial graphs. The pattern has to do with the multiplicity of every zero, i.e. the exponent attached to them.

Example:

For the above polynomial function P(x), its zeros are 0, 2, and -1. The multiplicity of these zeros are the exponents that are attached to each of them. So, the x-intercept 0 has the multiplicity of 4, while 2 has the multiplicity of 3, and -1 has the multiplicity of 2.

Multiplicity and the Crossing Behavior

With that said, the pattern regarding the x-axis crossing behavior is as follows

For every <u>odd multiplicity</u>, the graph at that particular x-intercept, will **cross** the x-axis.

For every <u>even multiplicity</u>, the graph at that particular x-intercept, will **not cross** the x-axis.

So from our previous example, since the x-intercepts 0 and -1 had an even multiplicity, the graph will not cross the x-axis at those points. In contrast, at the intercept 2, the graph will cross the x-axis because it had an odd multiplicity.

Graphing Polynomials

How is this useful? Well, understanding where the graph does and doesn't cross the x-axis will seriously aid in graphing the polynomials.

Example: Graph the polynomial, $P(x) = x^4(x-2)^3(x+1)^2$

End Behavior:

Example

Graph the polynomial: $R(x) = (x-1)^2(x-2)(x-5)^3$

End Behavior:

X->00, y->00 X->00, y->00

Example

Graph the polynomial: $T(x) = -x^4 + 3x^3 - 2x^2 =$

Zeros: 0, 0Y-intercept: (0, 0)Degree: $4(\xi_{Ue_{\Lambda}})$ + or -?: (-)

End Behavior:

Local Extrema (Maxima and Minima)

The last thing to observe in this section is the <u>local extrema</u>. Extrema refers to both maxima and minima of a graph. For Example,

We can see that this graph contains three local extrema.