Crossing Behavior

We can also observe a nice pattern regarding the x-axis crossing

behaviors of polynomial graphs. The pattern has to do with the
every zero, i.e. the exponent attached to them.)
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Example: P(x) = x*(x — 2)3(x + 1)?
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For the above polynomial func?tion P(x), its zeros are 0, 2, and -1. The
multiplicity of these zeros are the exponents that are attached to each

of them. So, the x-intercept 0 has the multiplicity of 4, while 2 has the
multiplicity of 3, and -1 has the multiplicity of 2.




Multiplicity and the Crossing Behavior

With that said, the pattern regarding the x-axis crossing behavior is as
follows

For every odd multiplicity, the graph at that particular x-intercept, will
cross the x-axis.

For every even multiplicity, the graph at that particular x-intercept, will
not cross the x-axis.

So from our previous example, since the x-intercepts 0 and -1 had an
even multiplicity, the graph will not cross the x-axis at those points. In
contrast, at the intercept 2, the graph will cross the x-axis because it
had an odd multiplicity.
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How is this useful? Well, understanding where the graph does and
doesn’t cross the x-axis will seriously aid in graphing the polynomials.
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Example: Graph the polynomial, P(x) = x*(x — 2)3(x + 1)?
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Graphing Polynomials

End Behavior:
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Example

Graph the polynomial: R(x) =(x—-1)%x—-2)(x—-5)°
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End Behavior:
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Example

Graph the polynomial: T(x) = —x* 4 3x3 — 2x%2 =X
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Local Extrema (Maxima and Minima)

The last thing to observe in this section is the local extrema. Extrema
refers to both maxima and minima of a graph. For Example,

/‘\\ d "\ We can see that this graph
/ \/ contains three local extrema.
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