

Objective

Students will...

- Be able to determine intervals on which a function is increasing or decreasing.
- Be able to apply the First Derivative Test to find relative extrema of a function.

Increasing vs Decreasing

Recall from the past that...

A function f is <u>increasing</u> on an interval if for any two numbers a and b in the interval, a < b implies f(a) < f(b).

A function f is **decreasing** on an interval if for any two numbers a and b in the interval, a < b implies f(a) > f(b).

In other words, moving from <u>left to right</u>, if the graph is going up it is increasing, while if it goes down it is decreasing.

Derivatives and Inc/Dec

Considering that the derivative of a function is the equation that finds the rate of change of a function, we have this trivial result...

Theorem 3.5- Let f be a function that is continuous on the closed interval [a,b] and differentiable on the open interval (a,b). Then... 1. If f'(x) > 0, i.e. positive, for all x in (a,b), then f is

- 1. If f'(x) > 0, i.e. positive, for all x in (a, b), then f is increasing on [a, b].
- 2. If f'(x) < 0, i.e. negative, for all x in (a, b), then f is decreasing on [a, b].
- 3. If f'(x) = 0, for all x in (a, b), then f is constant on [a, b].

Remember, derivative represents the slope!

Find the open intervals on which $f(x) = x^3 - \frac{3}{2}x^2$ is decreasing or increasing. (Graphically) $f(x) = x^3 - \frac{3}{2}x^2$ $f(x) = x^3 - \frac{3}{2}x^2$

Find the open intervals on which $f(x) = x^3 - \frac{3}{2}x^2$ is decreasing or

increasing. (Algebraically)

OPU
$$3 \times 2 - 3 \times < 0$$
 $(3) \times (3) \times$

First Derivative Test

Putting all of this together, we come up with the <u>First Derivative Test</u>, which allows us to find all of the relative minimums and maximums.

The First Derivative Test- Let c be a critical number of a function f that is continuous on an open interval I containing c. If f is differentiable on the interval, except possibly at c, then f(c) can be classified as follows.

dec inc.

- 1. If f'(x) changes from <u>negative to positive</u> at c, then f has a <u>relative</u> <u>minimum</u> at (c, f(c)).
- 2. If f'(x) changes from **positive to negative** at c, then f has a **relative maximum** at (c, f(c)).
- 3. If f'(x) either positive or negative on both sides of c, then f(c) neither a relative minimum nor a relative maximum.

Find the relative extrema of $f(x) = x^3 - \frac{3}{2}x^2$ (V: $3x^2 - 3x = 0$. (3x)(x-1) = 0 (3x)(x-1) = 0

(3)(x-1)=0

$$(3)(x-1)=0$$

 $(2)(x-1)=0$
 $(2)(x-1)=0$
 $(2)(x-1)=0$
 $(2)(x-1)=0$
 $(2)(x-1)=0$
 $(3)(x-1)=0$
 $(3$

Find the relative extrema of
$$y = \frac{x^2}{x+2}$$

$$y' = \frac{x^2 + 4x}{(x+1)^2 + (x+1)} + \frac{y}{x+1} + \frac{y}{$$

Find the relative extrema of the function $f(x) = \frac{1}{2}x - \sin x$ $f'(x) = \frac{1}{2} - \cos x$ $x = \frac{1}{2} -$

Find the relative extrema of $f(x) = (x^2 - 4)^{\frac{2}{3}}$

Find the relative extrema of $f(x) = \frac{x^4+1}{x^2}$

Homework 10/26

3.3 #1-8, 9-15 (odd), 17-37 (e.o.o), 39-45 (odd)