


Objective

Students will...

- Be able to determine intervals on which a
function is increasing or decreasing.

- Be able to apply the First Derivative Test to
find relative extrema of a function.



Increasing vs Decreasing

Recall from the past that...

A function f is increasing on an interval if for any two numbers a and b
in the interval, a < b implies f(a) < f(b).

A function f is decreasing on an interval if for any two numbers a and b
in the interval, a < b implies f(a) > f(b).

In other words, moving from left to right, if the graph is going up it is
increasing, while if it goes down it is decreasing.



Derivatives and Inc/Dec

Considering that the derivative of a function is the equation that finds
the rate of change of a function, we have this trivial result...

Theorem 3.5- Let f be a function that is continuous on the closed
interval [a, b] and dlﬁerentlable on the open interval (a, b). Then...

1.EF (x) > 0 i.e. positive, for all x in (a, b), then f is
increasing on [a, b].

2.1f f'(x) < 0, i.e. negative, for all x in (a, b), then f is
decreasing on [a, b].

3.1f f'(x) = 0, forall x in (a, b), then f is constant on [a, b].

Remember, derivative represents the slope!
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First Derivative Test

Putting all of this together, we come up with the First Derivative Test,
which allows us to find all of the relative minimums and maximumes.
laximums.

—

The First Derivative Test- Let ¢ be a critical number of a function f that is
continuous on an open interval I containing c. If f is differentiable on
\‘ye interval, except possibly at ¢, then f(c¢) can be classified as follows.

¢€<_, \n<.
B If f'(x) changes from negative to positive at ¢, then f has a relative

minimum at (¢, £(c)).  ac de «,
A 2. If f'(x) changes from positive to negative at c, then f has a relative
maximum at (c,f(c)).

3. If f'(x) either positive or negative on both sides of ¢, then f(¢)
neither a relative minimum nor a relative maximum.
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Example ¢

Find the relative extrema of y = -
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Find the relative extrema of the function f(x) = %x - sir?x
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Example
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Find the relative extrema of f(x) = (x? — 4)3
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Find the relative extrema of f (x) =



Homework 10/26

3.3 #1-8, 9-15 (odd), 17-37 (e.0.0), 39-45 (odd)



