Evaluate the expression (x-i+2)(x-i-2) (x-i+2) (x-

True or false?

3.
$$\frac{1}{87} > \frac{1}{86}$$

Objective

Students will...

- Be able to understand what rational functions are and their behaviors.
- Be able to find the x and the y intercepts of rational functions.

Rational Functions

Whenever we hear the word "rational" in mathematics, it'd be safe to say many of us think of fractions. Hence, a rational function would be most commonly described as a "fractional" function. This is in essence true!

A rational function is a function of the form $r(x) = Q(x) \qquad Q(x) + Q(x) \qquad \frac{3}{2} = Q(x) + Q(x)$

where P and Q are polynomials. We are also assuming that P(x) and Q(x) have no factor in common, i.e. they are completely reduced.

Behaviors of Rational Functions

Rational functions are often given special attention because, while they fit the standard definition of a function (one output for every input), they are quite unique in terms of their behaviors and structure. Consider the following rational function,

$$f(x) = \frac{1}{x}$$

We can already see that there is something we need to make sure of, and that is the fact that $x \neq 0$, since a fraction is not defined when the denominator is a zero.

Behaviors of Rational Functions

Also, as x or the denominator <u>increases</u>, the overall function <u>decreases</u>, and as x or the denominator <u>decreases</u>, the overall function <u>increases</u> function increases.

Ex.
$$\frac{1}{2} > \frac{1}{12} > \frac{1}{45667}$$

So, the behavior of this rational function, $f(x) = \frac{1}{x}$ can be written as,

$$\lim_{x \to \infty} f(x) = 0 \qquad \text{and} \qquad \lim_{x \to 0} f(x) = \infty$$

"The limit of f(x) as x approaches infinity is 0"

"The limit of f(x) as x approaches 0 is infinity."

X and the Y-Intercepts of Rational Functions

Although we have observed how rational functions behave in a unique way, the concept of finding the x and the y intercepts remain the same for all functions.

Ex. Find the x and the y-intercepts of the function $f(x) = \frac{x-2}{3}$

f(0) = 0 - 2 (0 - 2)

Examples

Find the x and the y intercepts of the following rational functions

1. $f(x) = \frac{1}{x}$ 2. $r(x) = \frac{x}{2}$ 3. $g(x) = \frac{x-5}{x-2}$ 3. $g(x) = \frac{x-5}{x-2}$ 4. $f(x) = \frac{1}{x}$ 5. $f(x) = \frac{1}{x}$ 7. $f(x) = \frac{1}{x}$ 8. $f(x) = \frac{x-5}{x-2}$ 9. $f(x) = \frac{0-5}{x-2}$ 1. $f(x) = \frac{1}{x}$ 9. $f(x) = \frac{1}{x}$ 1. $f(x) = \frac{1}{x}$ 2. $f(x) = \frac{x}{x-2}$ 3. $g(x) = \frac{x-5}{x-2}$ 4. $f(x) = \frac{0-5}{x-2}$ 1. $f(x) = \frac{1}{x}$ 2. $f(x) = \frac{x}{x-2}$ 3. $g(x) = \frac{x-5}{x-2}$ 4. $f(x) = \frac{0-5}{x-2}$ 1. $f(x) = \frac{0-5}{x-2}$ 2. $f(x) = \frac{1}{x}$ 3. $f(x) = \frac{x-5}{x-2}$ 4. $f(x) = \frac{0-5}{x-2}$ 5. $f(x) = \frac{0-5}{x-2}$ 7. $f(x) = \frac{1}{x}$ 1. $f(x) = \frac{1}{x}$ 1. $f(x) = \frac{1}{x}$ 1. $f(x) = \frac{1}{x}$ 2. $f(x) = \frac{1}{x}$ 3. $f(x) = \frac{x-5}{x-2}$ 4. $f(x) = \frac{0-5}{x-2}$ 5. $f(x) = \frac{0-5}{x-2}$ 7. $f(x) = \frac{1}{x}$ 9. $f(x) = \frac{0-5}{x-2}$ 1. $f(x) = \frac{0-5}{x-2}$ 1. $f(x) = \frac{0-5}{x-2}$ 1. $f(x) = \frac{0-5}{x-2}$ 1. $f(x) = \frac{0-5}{x-2}$ 2. $f(x) = \frac{0-5}{x-2}$ 3. $f(x) = \frac{x-5}{x-2}$ 4. $f(x) = \frac{0-5}{x-2}$ 7. $f(x) = \frac{0-5}{x-2}$ 9. $f(x) = \frac{0-5}{x-2}$ 1. $f(x) = \frac{0-5}{x-2}$ 1. $f(x) = \frac{0-5}{x-2}$ 1. $f(x) = \frac{0-5}{x-2}$ 1. $f(x) = \frac{0-5}{x-2}$ 2. $f(x) = \frac{0-5}{x-2}$ 3. $f(x) = \frac{0-5}{x-2}$ 4. $f(x) = \frac{0-5}{x-2}$ 7. $f(x) = \frac{0-5}{x-2}$ 9. $f(x) = \frac{0-5}{x-2}$ 1. $f(x) = \frac{0-5}{x-2}$ 1. $f(x) = \frac{0-5}{x-2}$ 1. $f(x) = \frac{0-5}{x-2}$ 2. $f(x) = \frac{0-5}{x-2}$ 3. $f(x) = \frac{0-5}{x-2}$ 4. $f(x) = \frac{0-5}{x-2}$ 7. $f(x) = \frac{0-5}{x-2}$ 9. $f(x) = \frac{0-5}{x-2}$ 1. $f(x) = \frac{0-5}{x-2}$ 2. $f(x) = \frac{0-5}{x-2}$ 3. $f(x) = \frac{0-5}{x-2}$ 4. $f(x) = \frac{0-5}{x-2}$ 1. $f(x) = \frac{0-5}{x-2}$ 1. $f(x) = \frac{0-5}{x-2}$ 2. $f(x) = \frac{0-5}{x-2}$ 3. $f(x) = \frac{0-5}{x-2}$ 4. $f(x) = \frac{0-5}{x-2}$ 5. $f(x) = \frac{0-5}{x-2}$ 7. f(x) =

Examples

Find the x and the y intercepts of the following rational functions

1.
$$f(x) = \frac{x^2 - 3x - 18}{x + 4}$$

$$4 - int; \frac{-18}{4} = -\frac{9}{2}$$

$$\begin{cases} (6.0), (-3.0) \\ (8-6)(x+3) = 0 \\ (8-6)(x+3) = 0 \end{cases}$$

Find the x and the y intercepts of the following rational functions

1.
$$f(x) = \frac{x^2 - 3x - 18}{x + 4}$$

2. $r(x) = \frac{x^2 + 6}{2}$

3. $r(x) = \frac{x^2 + 6}{2}$

4. $r(x) = \frac{x^2 + 6}{2}$

5. $r(x) = \frac{x^2 + 6}{2}$

6. $r(x) = \frac{x^2 + 6}{2}$

7. $r(x) = \frac{x^2 + 6}{2}$

8. $r(x) = \frac{x^2 + 6}{2}$

9. $r(x) = \frac{x^2 + 6}{2}$

9. $r(x) = \frac{x^2 + 6}{2}$

9. $r(x) = \frac{x^2 + 6}{2}$

1. $r(x) = \frac{x^2 + 6}{2}$

2. $r(x) = \frac{x^2 + 6}{2}$

3. $r(x) = \frac{x^2 + 6}{2}$

4. $r(x) = \frac{x^2 + 6}{2}$

5. $r(x) = \frac{x^2 + 6}{2}$

6. $r(x) = \frac{x^2 + 6}{2}$

7. $r(x) = \frac{x^2 + 6}{2}$

9. $r(x) = \frac{x^2 + 6}{2}$

1. $r(x) = \frac{x^2 + 6}{2}$

2. $r(x) = \frac{x^2 + 6}{2}$

3. $r(x) = \frac{x^2 + 6}{2}$

4. $r(x) = \frac{x^2 + 6}{2}$

5. $r(x) = \frac{x^2 + 6}{2}$

7. $r(x) = \frac{x^2 + 6}{2}$

1. $r(x) = \frac{x^2 + 6}{2}$

1. $r(x) = \frac{x^2 + 6}{2}$

2. $r(x) = \frac{x^2 + 6}{2}$

3. $r(x) = \frac{x^2 + 6}{2}$

4. $r(x) = \frac{x^2 + 6}{2}$

5. $r(x) = \frac{x^2 + 6}{2}$

7. $r(x) = \frac{x^2 + 6}{2}$

9. $r(x) = \frac{x^2 + 6}{2}$

1. $r(x) = \frac{x^2 + 6}{2}$

1. $r(x) = \frac{x^2 + 6}{2}$

1. $r(x) = \frac{x^2 + 6}{2}$

2. $r(x) = \frac{x^2 + 6}{2}$

3. $r(x) = \frac{x^2 + 6}{2}$

4. $r(x) = \frac{x^2 + 6}{2}$

5. $r(x) = \frac{x^2 + 6}{2}$

7. $r(x) = \frac{x^2 + 6}{2}$

1. $r(x) = \frac{x^2 + 6}{2}$

2. $r(x) = \frac{x^2 + 6}{2}$

3. $r(x) = \frac{x^2 + 6}{$

Homework 10/29

TB pg. 313 #5-14 (Just find the intercepts)