Lesson 5-1, 5-4a

Exponential and Logarithmic Functions and their Derivatives I

Objective

Students will...

- Be able evaluate the derivatives of exponential functions.
- Be able to evaluate the derivatives of logarithmic functions.

Natural Exponential Functions

Recall, the number e. We define the natural exponential function as $f(x) = e^x$, where $e \approx 2.718281828459...$

The derivative of the natural exponential function is a simple chain rule:

$$\frac{d}{dx}[e^u] = e^u(u')$$

In other words, the derivative of e^u is e^u times the derivative of u.

Find the derivative of the following:

a.
$$f(x) = e^{x-1}$$

b.
$$y = e^{1-x}$$

$$y' = e^{1-x}$$

$$= e^{1-x}$$

following:

$$y = e^{1-x}$$

$$= e^{1-x}$$

$$= e^{1-x}$$

$$= e^{1-x}$$

$$= e^{1-x}$$

$$= e^{1-x}$$

$$= e^{2x}$$

Find the derivative of the following:

$$d. f(x) = (e^{x})^{2}$$

$$f'(x) = \partial(e^{x}) \cdot e^{x}$$

$$= \partial(e^{x}) \cdot e^{x}$$

e.
$$y = e^{2x}e^x$$

$$y = e^{2x+x} = e^3x$$

$$y = e^{3x} = e^{3x}$$

$$= 3e^{3x}$$

$$f. y = e^{198}$$

$$y' = e^{198}$$

$$y' = e^{198}$$

$$10$$

In X=loge X Natural Logarithmic Functions

Recall that the inverse function of e^x is known as the natural logarithmic function, or namely, $f(x) = \ln x$.

Remember, $b = e^a \rightarrow \ln b = a$

The derivative of the natural log function is also a chain rule as follows:

$$\frac{d}{dx}[\ln u] = \frac{1}{u}(u') \quad = \frac{u'}{u}$$

So the derivative of $\ln u$ is 1 over u times the derivative of u.

Find the derivative of the following:

a.
$$f(x) = \ln 2x$$

$$f'(x) = \frac{1}{2x} \cdot 2$$

$$= \frac{1}{2x} = \frac{1}{x}$$

b.
$$y = \ln(x^2 + 1)$$

$$y' = \frac{1}{x^2 + 1}$$

$$-\frac{2x}{x^2 + 1}$$

c.
$$g(x) = x \ln x$$

$$g'(x) = 12nx + \frac{1}{x} \cdot x$$

$$= 2nx + \frac{x}{x}$$

$$= 2nx + \frac{x}{x}$$

$$y' = \frac{\ln(x^3)}{x^3} \cdot 3x^2 = \frac{3x^2}{x} = \frac{3}{x}$$

$$y = 3h \times \pi$$

$$y' = 3\left(\frac{3}{2}\right) = \left(\frac{3}{2}\right)$$

Example

e.
$$y = (\ln x)^3$$

f. $y = \ln 4x + \ln 2x - \ln 8x$

$$y' = 3(\ln x)$$

$$y' = \sqrt{1 + + \sqrt{1 + \sqrt{1 + + + \sqrt{1 +$$

Laws of Exponents/Logarithms Review

Laws of Exponents

$$1. x^a x^b = x^{a+b}$$

2.
$$\frac{x^a}{x^b} = x^{a-b}$$
, given that $x^b \neq 0$

$$3. (x^a)^b = x^{ab}$$

Laws of Logarithms:

$$1. \log_a(AB) = \log_a A + \log_a B$$

$$2. \log_a \left(\frac{A}{B}\right) = \log_a A - \log_a B$$

$$3. \log_a(A^c) = C \log_a A$$

Homework 11/15

5.1 #19-33 (odd), 45-67 (e.o.o)

5.4 #35-45 (odd)