Warm Up 4/9

Convert the following polar coordinates into rectangular coordinates.

1.
$$(6, \frac{2\pi}{3}) = (6(0) \frac{2\pi}{3}, 6\sin \frac{2\pi}{3})$$

 $= (6(-1/2), 6(\frac{5\pi}{2}))$
2. $(0, 13\pi)$
 $= (0(0)|3\pi, 0)\sin|3\pi$

Objective

Students will...

Be able to convert rectangular equations into polar equations.

Recap

So, for recap...

Relationship between Polar and Rectangular Coordinates

1. To change from polar to rectangular coordinates, use the formulas

$$x = r \cos \theta$$
 and $y = r \sin \theta$

2. To change from rectangular to polar coordinates, use the formulas

$$r^2 = x^2 + y^2$$
 and $\tan \theta = \frac{y}{x}$ $(x \neq 0)$

Polar Equations

Polar Equations are equations solved for r, written in terms of $\sin \theta$, $\cos \theta$, or a combination of both.

Since $x = r \cos \theta$ and $y = r \sin \theta$, all rectangular equation (written in terms of x and y) can be written in polar equation form. We use the following steps.

Ex. Write the equation y = 2x - 9 in polar form.

Rewrite x as $r\cos\theta$ and y as $r\sin\theta$:

implify and solve for r:

 $n\theta: \ rsin\theta = 2(r\cos\theta) - 9$ $rsin\theta = 2r\cos\theta - 9$ $2r\cos\theta - r\sin\theta = 9$ $r(2\cos\theta - \sin\theta) = 9$

Examples

Express the equation
$$x^2 = 4y$$
 in polar form. $(V\cos\theta)^2 = 4(V\sin\theta)$

Example

Convert the equation x = 1 to polar form.

Homework Problem

Convert the equation to polar form.

$$42. x^{2} + y^{2} = 9$$

$$(r \cos \theta)^{2} + (r \sin \theta)^{2} = 9$$

$$\Rightarrow r^{2}(\cos^{2}\theta + r^{2}\sin^{2}\theta) = 9$$

$$\Rightarrow r^{2}(\frac{\cos^{2}\theta + \sin^{2}\theta}{\cos^{2}\theta}) = 9$$

$$\Rightarrow r^{2}(\frac{\cos^{2}\theta + \sin^{2}\theta}{\cos^{2}\theta}) = 9$$

Homework 4/9

TB pg. 587 #42-46