

Objective

Students will...

- Be able to give a geometric definition of a parabola.
- Be able to define focus (foci), directrix, axis of symmetry, and vertex.
- Be able to find the equation of a parabola.

Parabola within a Cone

As seen from yesterday's video, a parabola can be cut out from a cone. Parabolas are easily found in the real-world.

Parabola

The trajectory of a basketball is a parabola.

Geometric Parabola

We worked extensively with parabolas <u>algebraically</u> back in chapters 2 and 3. Here in this chapter, we now look at parabolas <u>geometrically</u>.

Geometric Definition of a Parabola- A parabola is a set of points in the plane **equidistant** from a fixed point F (called the **focus**) and a fixed line l (called the **directrix**). We define the vertex as the point that lies **halfway** between the **focus** and the **directrix**, and the **axis of symmetry** is the line that runs through the focus **perpendicular** to the directrix.

Equations and Graphs of Parabolas

Using the distance formula, we can see that parabolas have the following equations: horizontal.

Opening up or down

$$x^2 = 4py$$

 \bigvee Vertex: V(0,0)

Focus: F(0, p)

Directrix: y = -p

Focal Diameter: 4p

(the number in front of y)

Opens...

Up: p > 0

Down: p < 0

Opening left or right

 $y^2 = 4px$

V(0,0)

F(p,0)

x = -p

4p

(the number in front of x)

Right: p > 0

Left: p < 0

vertical (up) Find the equation of the parabola with vertex V(0,0) and focus F(0,2)

and sketch its graph.

Example

Find the equation of the parabola with vertex V(0,0) and focus F(0,-8), and sketch its graph.

hori Z.

Example

A parabola has the equation $6x + y^2 = 0$. Find its focus, directrix, and the focal diameter, and sketch its graph.

$$\frac{4p^{-}-\frac{-6}{y}=-\frac{3}{2}}{}$$

Homework Problems

Find the focus, directrix, and focal diameter of the parabola, and sketch its graph.

7.
$$y^2 = 4x$$

16.
$$x - 7y^2 = 0$$

Homework Problems

Find an equation for the parabola that has its vertex at the origin and satisfies the given condition(s).

29. Directrix x = 2

35. Opens upward with focus 5 units from the vertex.

Homework 4/6

TB pg. 751 #1-6, 7-17 (odd), 25, 27, 29, 33, 35