

Objective

Students will...

 Be able to use Integration By Parts technique to integrate.

Anti-Derivatives

You have learned by now (hopefully) that integrals "reverse" derivatives (hence the term anti-derivative). So for every differentiation technique (power rule, product/quotient rule, chain rule, etc.), it would make sense to have corresponding integration techniques.

We've learned the "anti-power rule," and U-Substitution (the "anti-Chain rule"). What about for derivatives that are formed as a result of a product rule? For this we have the <u>Integration By Parts Technique</u>.

Integration By Parts

Integration By Parts- If u and v are functions of x and have continuous

Guidelines for Integration By Parts

So, instead of choosing a u as done for U-Sub, here we need to choose or designate a function to be u and the other to be dv. For the u function you would need to find du by finding its derivative. For the dv function, you would need to find v by doing the anti-derivative.

Tips:

- 1. Try letting dv be the most complicated integrand.
- 2. Try letting u be the function with a simpler derivative. In other words, du is simpler than u.

This technique is mainly used when the integrand involves a product of algebraic and transcendental (e^x , $\ln x$, etc.) functions.

Ex.
$$\int x \ln x \, dx$$
 $\int x^2 e^x dx$ $\int e^x \sin x \, dx$

Examples

Examples

a. $\int xe^{x} dx = UV - \int V du$ $V = X \quad du = V dx$ $V = e^{x} dv = e^{x} \quad dx = xe^{x} - \int e^{x} dx$

Examples

b.
$$\int x^{2} \ln x \, dx$$
 $u = \ln x$
 $\int u = \ln x \, dx$
 $\int x^{2} \ln x \, dx = \frac{1}{3}x^{3} \ln x - \int \left(\frac{1}{3}x^{3}\right) \left(\frac{1}{x}\right) \, dx$
 $dv = x^{2} dx = \frac{1}{3}x^{3} \ln x - \frac{1}{3}\left(\frac{1}{3}x^{3}\right)$
 $= \frac{1}{3}x^{3} \ln x - \frac{1}{3}\left(\frac{1}{3}x^{3}\right)$
 $= \frac{1}{3}x^{3} \ln x - \frac{1}{3}\left(\frac{1}{3}x^{3}\right)$
 $= \frac{1}{3}x^{3} \ln x - \frac{1}{3}\left(\frac{1}{3}x^{3}\right)$

Sin'(x) Examples

c.
$$\int_0^1 (\arcsin x) dx$$
 $V = Ax$
 $V = A$

d. $\int x^2 \sin x \, dx$ $V = \int \int x \, dx$ $V = \int x \, dx$

Examples

e. $\int \sec^3 x \, dx = \int (\sec^2 x)(\sec x) \, dx$ $U = \sec x \, du = \sec x + \tan x$ $\int \sec^3 x \, dx = \sec x + \cot x \, dx$ $\int \cot^3 x \, dx = \sec x + \cot x \, dx$ $\int \cot^3 x \, dx = \sec x + \cot x \, dx$ $\int \cot^3 x \, dx = \cot x \, dx$ $\int \cot^3 x \, dx = \cot x \, dx$ $\int \cot^3 x \, dx = \cot x \, dx$ $\int \cot^3 x \, dx = \cot x \, dx$ $\int \cot^3 x \, dx = \cot x \, dx$ $\int \cot^3 x \, dx = \cot x \, dx$ $\int \cot^3 x \, dx = \cot x \, dx$ Secretary + Secretary + Secretary + Secretary + Secretary + In (Secretary)

Further Tips/Guidelines

SUMMARY OF COMMON INTEGRALS USING INTEGRATION BY PARTS

1. For integrals of the form

$$\int x^n e^{ax} dx, \qquad \int x^n \sin ax dx, \qquad \text{or} \qquad \int x^n \cos ax dx$$

let $u = x^n$ and let $dv = e^{ax} dx$, $\sin ax dx$, or $\cos ax dx$.

2. For integrals of the form

$$\int x^n \ln x \, dx, \qquad \int x^n \arcsin ax \, dx, \qquad \text{or} \qquad \int x^n \arctan ax \, dx$$

let $u = \ln x$, arcsin ax, or arctan ax and let $dv = x^n dx$.

3. For integrals of the form

$$\int e^{ax} \sin bx \, dx \qquad \text{or} \qquad \int e^{ax} \cos bx \, dx$$

let $u = \sin bx$ or $\cos bx$ and let $dv = e^{ax} dx$.

Using the Tabular Method

This can be used for integrals of the form $\int x^n \sin ax \, dx$, $\int x^n \cos ax \, dx$, $\int x^n e^{ax} \, dx$.

Ex. Find $\int x^2 \sin 4x \, dx$

Refor to pg. 530 Ex 7

Homework 3/20

8.2 #5-10, 11-35 (e.o.o), 47-63 (e.o.o)