


Objective

Students will...

- Be able to use Integration By Parts technique
to integrate.



Anti-Derivatives

You have learned by now (hopefully) that integrals “reverse”
derivatives (hence the term anti-derivative). So for every
differentiation technique (power rule, product/quotient rule, chain
rule, etc.), it would make sense to have corresponding integration
techniques.

We've learned the “anti-power rule,” and U-Substitution (the “anti-
Chain rule”). What about for derivatives that are formed as a result of
a product rule? For this we have the Integration By Parts Technique.



Integration By Parts

Integration By Parts- If u and v are functions of x and have continuous
derivatives, then [udv = uv — [v du.

d Proof: (Consider the Product Rule for Derivatives)
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Guidelines for Integration By Parts

So, instead of choosing a u as done for U-Sub, here we need to choose
or designate a function to be u and the other to be dv. For the u
function you would need to find du by finding its derivative. For the dv
function, you would need to find v by doing the anti-derivative.

Tips:
1. Try letting dv be the most complicated integrand.

2. Try letting u be the function with a simpler derivative. In other
words, du is simpler than u.

This technique is mainly used when the integrand involves a product of
algebraic and transcendental (e*, In x, etc.) functions.

Ex. [xInxdx | B*e%dx [e*sinxdx
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Further Tips/Guidelines

SUMMARY OF COMMON INTEGRALS USING INTEGRATION BY PARTS
1. For integrals of the form

Jx" e%* dx, f x" sin ax dx, or f x" cos ax dx

let u = x" and let dv = e“* dx, sin ax dx, or c0S ax dx.
2. For integrals of the form

Jx" In x dx, J. x™ arcsin ax dx, or J‘ x™arctan ax dx

let u = In x, arcsin ax, or arctan ax and let dv = x" dx.
3. For integrals of the form

Je“-‘ sin bx dx or J e** cos bx dx

let u = sin bx or cos bx and let dv = e%* dx.



Using the Tabular Method

This can be used for integrals of the form [ x™ sinax dx, [ x™ cos ax dx,
| & dx;

Ex. Find [ x2 sin 4x dx

Rete 1’0?3.%35\@




Homework 3/20

8.2 #5-10, 11-35 (e.0.0), 47-63 (e.0.0)



